Компьютерная грамотность

Мегаомметр описание. Измерения мегаомметром

Одним из важнейших аспектов безопасности, безотказности, правильности работы электрических силовых линий, установок, приборов и т.д., является качественная изоляция. Многими людьми, далекими от вопросов электротехники, она воспринимается, как данность. То есть изоляция имеется – и славно, значит, все в норме, и можно пользоваться электричеством без опаски. А между тем – это серьезное заблуждение.

Во-первых, идеальных диэлектриков просто не существует. Во-вторых, даже самая надежная изоляция со временем может потерять свои качества – прогореть, оплавиться, растрескаться, начать крошиться, получить механические повреждения. В-третьих, на ее диэлектрические качества влияют и внешние факторы – сырость, влажность воздуха, загрязнённость поверхности и другие.

Так что контроль за состоянием изоляции - не менее важен, чем за всеми другими составляющими электрических установок. Ни один объект не может быть запущен в эксплуатацию, пока не будет проверено соответствие сопротивления изоляции существующим нормам. А для таких контрольных замеров используются специальные приборы, называемые мегаомметрами (или мегомметрами). В повседневной жизни хозяевам домов и квартир сталкиваться с ними приходится нечасто. И многие даже не подозревают о существовании таких контрольно-измерительных приборов. А между тем, следить за состоянием своей электросети, так или иначе, необходимо. Поэтому видится, что информация о том, как пользоваться мегаомметром будет полезна всем.

Принцип измерения сопротивления изоляции мегомметром

Принцип измерения величины сопротивления изоляции сам по себе несложен. Используется закон Ома – замеряется сила протекающего между двумя щупами тока при известном поданном на них напряжении. Отношение величины напряжения к силе тока как раз и даст искомый результат. Этот принцип применяется практически во всех контрольно-измерительных приборах, предназначенных для измерения сопротивлений.

R = U/ I

Но для того чтобы вызвать и «засечь» электрический ток в цепи при очень больших показателях сопротивления (а у изоляции по умолчанию они должны быть такими), требуется подавать и весьма внушительное напряжение. Именно это и реализовано в мегомметрах.

Независимо от типа и модели прибора, он в обязательном порядке имеет:

  1. Высоковольтный источник постоянного напряжения.
  2. Измерительный блок, оценивающий силу проходящего по цепи электрического тока.
  3. Устройство индикации показаний – стрелочное со шкалами, или в виде цифрового дисплея с показом абсолютных значений.
  4. Набор измерительных проводов со щупами, посредством которых высокое напряжение передается на тестируемый объект.

На сегодняшний день существует два основных типа подобных приборов.

  • Еще не столь давно безраздельно господствовали мегомметры со стрелочной шкалой и встроенным индуктором – динамомашиной. Вращением специальной рукоятки генерируется высокое напряжение, которое после необходимого преобразования подаётся на щупы. Частота вращения – примерно 120÷140 оборотов в минуту (2 оборота в секунду). О выходе на установленное калиброванное высокое напряжение, как правило, извещает загоревшийся индикатор, расположенный на передней панели.

Подобные модели довольно просты в устройстве, несложны в управлении. Как правило, имеют весьма солидные габариты и вес. Но зато – они полностью автономны, то есть не требуют ни элементов питания, ни подключения к сети. Идеальное решение для любых «полевых» условий, что бывает особенно важно во время ведения строительства.

Как бы то ни было, мегомметры такого типа все еще выпускаются промышленностью, находят спрос. А многие мастера-электрики и вовсе предпочитают исключительно их, несмотря на появление более компактных и «навороченных» приборов.

  • Другой тип мегомметров – это электронные приборы, которые обычно намного компактнее и легче. Высокое напряжение у них вырабатывается в специальном электронном преобразователе от встроенного аккумулятора, сменных источников питания или от блока питания, требующего подключения к сети. Многие модели позволяют выбрать любой из этих вариантов питания. Но в любом случае прослеживается зависимость от наличия источника – полной автономности в работе нет.

Электронные приборы довольно компактны, и некоторые из них внешне даже вполне можно спутать с . Кстати, во многих моделях это сходство не ограничивается лишь внешним. Действительно, в них заложены некоторые функции «общего плана». Обычно это измерение напряжения, прозвон цепей и определение сопротивления в нижнем диапазоне значений, то есть от нуля до мегаома. Могут иметься и другие функции, в том числе и узкоспециализированного предназначения.

Проведение измерений – до предела упрощено. После выставления всех необходимых параметров и коммутации проводов мегомметра к проверяемому объекту, остается только нажать кнопку «TEST».

Индикация полученных показаний замеров выводится на цифровой дисплей, что, безусловно, значительно упрощает восприятие информации. Спустя несколько секунд после пуска, на дисплее появится измеренное значение сопротивления, с указанием соответствующей величины (МОм или ГОм, МΩ или GΩ).


Удобство в том, что и замеры, и считывание результатов никак не зависит от пространственного положения прибора. У стрелочных с этим сложнее – для корректных замеров требуется исключительно горизонтальное расположение.

Итак, независимо от типа мегомметра, принцип его работы един. На тестируемом объекте закрепляются щупы измерительных проводов, подключенных к прибору. Затем на них подается калиброванное высокое напряжение. Измеренное значение силы тока позволяет судить о сопротивлении между щупами. Значение выводится на устройство индикации.

Какие меры безопасности должны соблюдаться при работе с мегомметром

Все, казалось бы, чрезвычайно просто. Но, оказывается, такие приборы относятся исключительно к категории профессиональных. И далеко не все работники могут быть допущены к их эксплуатации – требуется определенное обучение и получение соответствующего допуска – не ниже третьей группы электробезопасности.

Автор статьи в данном случае ни в коем случае не рекомендует, как обычно принято на строительных сайтах, выполнять измерения своими руками. Но если уж какой-то хозяин дома или квартиры возьмёт на себя смелость и ответственность за выполнение самостоятельных измерений – он должен по меньшей мере максимально соблюдать требования безопасности выполнения работ.

  • Сам прибор не должен иметь никаких механических повреждений корпуса. Особое внимание - целостности изоляции измерительных проводов, исправности щупов, зажимов-«крокодилов», штыревых контактов для подключения к мегомметру.
  • Любой тестируемый объект или линия в обязательном порядке обесточивается. Все переводятся в положение «выключено» или, в старых распределительных щитах, выкручиваются плавкие предохранители – пробки. В некоторых случаях требуется временное отсоединение проводов от выходных клемм автоматических выключателей.

На намеренно отключенное состояние сети желательно акцентировать внимание установкой таблички, например, «Не включать! Идут работы». Так, чтобы никто из домашних или помощников случайно не включил автоматы во время тестирования.

  • От сети отключаются все приборы. Вилки вынимаются их розеток. Лампочки выкручиваются из патронов светильников. Особое внимание – приборам с точной электроникой. Подаваемое в линию высокое напряжение может запросто их «убить».

  • Готовится к работе так называемое переносное заземление. Мастера пользуются приспособлением заводского изготовления, но вполне можно сделать вполне рабочее устройство и самому.

Оно может представлять собой отрезок медного многожильного провода требуемой длины, сечением не менее 1,5 мм². Один его конец зачищается, и может быть оснащен клеммой или зажимом-крокодилом с расчетом на подключение к шине заземления. Второй конец, также зачищенный, необходимо укрепить на диэлектрической штанге. Хорошо, если найдется пластиковый стержень нужной длины. Если нет, то подойдет и сухая деревянная рейка, на краю которой и крепится зачищенный конец провода, например, несколькими витками изоленты. Место на штанге, за которое придется браться руками, тоже можно «одеть» в пару слоев изоленты. А длина штанги выбирается такой, чтобы было удобно касаться концов тестируемых проводов с безопасного расстояния.

После каждого замера рекомендуется снимать остаточное напряжение в проверяемых проводниках касанием этого переносного заземления. Кстати, при тестировании линий значительной протяженности заряд может оставаться в них нешуточный, способный нанести тяжелую электротравму.

  • Работы по замеру сопротивления изоляции желательно проводить в диэлектрических перчатках. Многие это игнорируют и, наверное, напрасно. В ходе замеров, особенно по неопытности, ничего не стоит коснуться щупа или токоведущей детали, скажем, тыльной стороной ладони. А работать-то приходится с напряжениями, порой достигающими и 2500 вольт! Не шутка!
  • Необходимо правильно обращаться со щупами. Если обратить внимание, то на каждом из них на рукоятке имеется бортик, своеобразная гарда. Это не столько для удобства, сколько для обеспечения безопасности. Тем самым задается граница безопасной для пальцев зоны, пересекать которую при проведении замеров – запрещается.

  • После каждого замера должно сниматься остаточное напряжение и в щупах мегомметра. Для этого их оголенные концы просто замыкают между собой. Надо сказать, что современные приборы часто оснащаются функцией автоматического разряда после снятия каждого показания. Но лучше перестраховаться, а у многих электриков такое замыкание контактов после каждого замера – просто вошло в привычку.

Как проводятся измерения сопротивления изоляции

Далее будет рассмотрены вопросы подготовки мегомметра к работе и проведения замеров. Сразу отметим: пересмотреть все возможные варианты – просто невозможно. Тем более – показать работу на всех существующих моделях приборов. Но вот основные приемы тестирования – они в целом сходны. Тем более что информация направлена не электрикам-профессионалам (они сами кого хочешь научат), а тем, кто решился на свой страх и риск провести проверку изоляции в своих жилых владениях.

Как прибор готовится к работе

Задача несложна.

  • Если это электронный прибор, то необходимо первым делом вставить в батарейный отсек источники питания, естественно, с соблюдением полярности. После этого отсек закрывается. Если используется адаптер питания, то он подключается в соответствующее гнездо прибора.

Прибор старого образца, со встроенной динамомашиной, понятно, в такой операции не нуждается.

  • Далее, готовятся к работе измерительные провода со щупами.

В комплекте с прибором могут идти два или три измерительных провода. Чаще всего в замерах сопротивления изоляции участвуют два. Один подключается в гнездо прибора «Л» (или «R+»), второе – «З» (или «R-»). Некоторые современные мегомметры и вовсе обходятся этими двумя гнездами подключения.

Но на многих моделях имеется еще и гнездо «Э». И в комплект в этом случае входит экранированный провод несколько необычной конфигурации – у него два контакта для подключения к прибору. Один – обычный для подключения к «З», и второй – для гнезда «Э». значит, основные измерения будут проводиться этим проводом, а оба разъема подключаются по умолчанию.


Экранированным шнуром обязательно пользуются в тех случаях, когда требуется произвести ревизию кабеля в экранирующей оплетке. Или же протяженной линии, на поверхности изоляции которой возможны поверхностные (вследствие ее сырости, загрязнённости, замасленности и т.п.), способные исказить конечный результат замеров. В таких случаях в подключении прибора к тестируемому кабелю, например, при взаимной проверке сопротивления между двумя жилами, будут участвовать три провода.


В повседневной работе профессиональных электриков, особенно занимающихся прокладкой и испытанием протяжённых силовых линий такие случаи – не редкость. Но в масштабах, скажем, квартиры или дома, сталкиваться с таким практически не приходится. Да и экранированные кабели во внутренней разводке почти никогда не применяются. Так что дальше этот варианту внимания уделяться не будет.

Значит, остаются два провода, «Л» и «З» (Rx «+» и «-») которые участвуют во всех проверках. Они подключаются в свои гнезда. А для удобства работы на щупы можно надеть зажимы-«крокодильчики», часто идущие в комплекте.

  • Далее, необходимо установить значение проверочного калиброванного напряжения. В различных моделях установка осуществляется по-своему, и может лежать в разных диапазонах, от 50 до 2500 вольт.

Какое же напряжение необходимо? Это можно посмотреть в таблице – оно зависит от типа тестируемого объекта. Там же в таблице указаны и минимально допустимые значения сопротивления изоляции, при которых объект может считаться исправным.

Тип проверяемого объекта Контрольное напряжение на клеммах мегомметра Минимально допустимое сопротивление изоляции Примечания по проведению замеров
Электрические приборы и установки с максимальным напряжением до 50 В 100 В Соответствие паспортному, но не менее 0,5 МОм Перед проведением замеров все полупроводниковые приборы должны быть зашунтированы.
- с напряжением от 50 до 100 В 250 В
- с напряжением от 100 до 380 В 500 – 1000 В
- с напряжением свыше 380, но не более 1000 В 1000 – 2500 В
Распределительные щиты и устройства 1000 – 2500 В Не менее 1 МОм Каждая секция распределительного устройства должна проверяться индивидуально
Электропроводка, силовая и осветительная 1000 В Не менее 0,5 МОм Периодичность проверок: в нормальных условия – раз в три года, в опасных помещениях – ежегодно
Стационарные электрические плиты 1000 В Не менее 1 МОм Проверка проводится ежегодно. Замеры проводятся после прогрева и выключения плиты.

Если проверка показывает, что сопротивление изоляции больше указанных норм, то объект может считаться отвечающим требованиям безопасности и готовым к пуску. В противном случае приходится выяснять причину – искать повреждённый участок или допущенные в ходе электромонтажных работ ошибки.

Порядок выполнения замеров сопротивления изоляции

Основные приемы работы

В области обслуживания домашних электросетей наиболее часто практикуют две операции контроля состояния изоляции. Первая – это проверка жил кабеля на предмет пробоя на «землю». Вторая – проверка взаимной изолированности жил на предмет возможного короткого замыкания. Обе операции сходны между собой, но все же имеются и отличия.

Иллюстрация
Для начала посмотрим на проверку изоляции кабеля относительно земли.
На иллюстрации условно показан разделанный кабель с тремя фазными проводами – А, В и С. Кроме того, вниз отведены два провода:синий – нулевой и желто-зеленый – защитного заземления. Концы всех проводов зачищены.
Перед началом проверки, безусловно, следует лишний раз убедиться в полном обесточивании – с помощью индикаторной отвёртки или мультитестера.
Мегомметр готовится к работе в гнезда вставляются два измерительных провода, на щупы удобнее будет надеть зажимы-«крокодильчики».
Один, контрольный провод пока свободен (поз. 1), второй (поз. 2) сразу подключается к заземляющей шине электрощита.
К этой же шине подсоединяется и провод переносного заземления (поз.3).
Когда тестируется многожильный кабель, то иногда все проводники объединяют закорачивающим проводом или же скруткой. И после этого проводят измерение сопротивления изоляции относительно шины земли. Но если в кабеле жил немного, а это так чаще всего в бытовой практике и случается, быстрее, наверное, будет проверить каждый их проводов отдельно.
На примере показана последовательность контроля изоляции для фазного провода С. Но она же соблюдается и на всех остальных.
Итак, первый делом по правилам проверки следует снять с провода возможное наведенное напряжение. Для этого к его оголённому концу присоединяется переносное заземление.
Следующим шагом к этой же точке подсоединяется зажим контрольного измерительного провода мегомметра.
Далее, переносное заземление снимается, и производится замер сопротивления изоляции.
В зависимости от модели это выполняется или вращением рукоятки индуктора в течение 10÷15 секунд, или нажатием на кнопку «TEST».
Показания фиксируются в журнале или просто сравниваются с допустимым значением, чтобы можно было судить об исправности изоляции провода.
Теперь необходимо снять с протестированной жилы возможное накопившееся емкостное напряжение.
Для этого, не снимая пока зажима контрольного провода, сюда же вновь подключают переносное заземление.
И вот только теперь по правилам можно убрать щуп (зажим) контрольного измерительного провода и считать проверку жилы завершенной.
Далее, переносное заземление переставляется на следующий провод, подлежащий проверке, и вся последовательность операций повторяется.
И так – пока не будут проверены все провода кабеля.
Далее, начинается проверка взаимной изолированности проводов кабеля на предмет возможного короткого замыкания.
Поступают, например, следующим образом.
Один измерительный провод цепляют на зачищенный конец жилы защитного заземления РЕ. А затем последовательно проводят замеры сопротивления изоляции, устанавливая второй щуп поочередно на концах всех остальных жил.
На иллюстрации не показано, но следует помнить, что если тестируется протяженная линия, то никогда не лишним будет после каждого замера коснуться кончиков проверенной пары проводов переносным заземлением.
После измерений (при их положительных результатах) жила РЕ считается полностью проверенной.
Далее, таким же образом поступают с жилой N – на ней закрепляется один зажим, а вторым проводится проверка оставшихся фазных жил.
Как уже наверное понятно, следующим шагом станет проверка изоляции между проводом А и, поочередно, В и С.
И Наконец, останется только последний вариант – замер сопротивления изоляции между жилами В и С.
Таким образом, все возможные сочетания проверены. И если результаты положительные, то к изоляции кабельной линия претензий нет.

В принципе, все участки домашней проводки можно протестировать, опираясь на два рассмотренных подхода. Например, непосредственно на распределительном щите все отходящие от него линии проверяются на возможный пробой на землю. А затем каждая из них – и на вероятность короткого замыкания.

Некоторые измерения проще и удобнее произвести по месту установки приборов. Например, проверка розетки (розеточной группы) будет заключаться в поочерёдном замере сопротивления изоляции между клеммой РЕ и контактами нуля и фазы. А затем – между . Итого – три замера. Если же розеточная линия не предполагает наличия заземления, то и вовсе требуется один замер – между L и N.

Пример замера сопротивления изоляции обычного шнура питания

Итак, требуется убедиться в надежности изоляции шнура питания (это может быть и просто отрезок кабеля или провода.

Иллюстрация Краткое описание выполняемой операции
Для работы будет использоваться вот такой современный электронный мегомметр UT-505.
Весь комплект – сам мегомметр, измерительные провода со щупами и зажимами, адаптер питания, размещается в удобном чехле.
Сам прибор несколько больше по размерам, чем обычный мультиметр. Но для мегомметров он считается очень даже компактным.
Кстати, как можно увидеть, в нем имеются и функции мультитестера – предусмотрена возможность замера постоянного или переменного напряжения, измерения сопротивлений в полном диапазоне значений.
Для работы в режиме мультиметра предусмотрена отдельная пара гнезд для подключения измерительных проводов – она расположена слева.
Справа же – гнезда для работы в режиме мегомметра.
В комплекте – два качественных гибких измерительных провода, красный и черный. По мере необходимости на их конец можно присоединить или зажим-«крокодильчик»…
…или щуп с удобной изолированной рукояткой.
Органы управления прибором.
Подробно на всех останавливаться не будем – у разных моделей мегомметров они могут отличаться.
В данном случае нас больше интересует рукоятка переключения режимов работы – она при тестировании изоляции должна быть установлена на требуемое значение калиброванного напряжения.
В данной модели предусмотрено пять таких позиций – 50, 100, 250, 500 и 1000 вольт. Для работы в условиях обычных электросетей этого вполне достаточно. Кроме того, «базовые» значения можно несколько изменять в сторону увеличения и уменьшения кнопками «вверх» и «вниз».
Ну и хорошо выделяется на общем фоне крупная кнопка «TEST». Именно ею запускается измерение.
Задача – проверить качество изоляции шнура питания на предмет возможного короткого замыкания.
На измерительные провода надеваются зажимы-«крокодильчики» - с ними будет в данном случае удобнее. Концы проводов подключаются к соответствующим правым гнездам прибора.
Затем зажим устанавливается на один контактный штырь вилки шнура…
…а затем аналогичным образом коммутируется и второй провод – ко второму штырю вилки.
Переключатель режимов работы прибора перестанавливается в положение тестового напряжения в 1000 вольт.
При желании или необходимости можно несколько повысить или понизить калиброванное напряжение кнопками со стрелками вверх и вниз.
Так, оператор посчитал необходимым в данном примере повысить напряжение до 1200 вольт. Его значение показывается на дисплее.
По готовности к замеру осталось только нажать кнопку его запуска - «TEST».
Спустя несколько секунд на дисплее появляется замеренное значение сопротивления изоляции.
А точнее – в этом примере и на этом приборе показывается, что сопротивление составило более 20 гигаом (˃ 20.0 GΩ). Это во много раз превышает допустимый минимум, то есть короткого замыкания на проверенной паре проводов можно не опасаться.
Аналогичным образом можно сразу поочередно протестировать эти провода с жилой защитного заземления, то есть провести еще два замера. Вот тогда будет твердая уверенность в том, что шнур полностью безопасен и пригоден для дальнейшей эксплуатации.
Пример со шнуром взят для упрощения восприятия. Но аналогичным образом тестируются на короткое замыкание и линии скрытой домашней проводки.

Пример замера сопротивления изоляции обмоток трёхфазного асинхронного двигателя

Одна из распространенных причин выхода таких из строя – пробой обмоток через изоляцию на корпус. Что, кстати, может представлять немалую опасность для людей. Поэтому подобные силовые приводы также регулярно тестируются на качество изоляции. Пример показан в таблице ниже. А использоваться будет ставшая уже своеобразной «классикой» модель мегомметра ЭСО202/2-Г, которая до сих пор выпускается и пользуется спросом.

Иллюстрация Краткое описание выполняемых операций
Предстоит проверить этот двигатель.
Мегомметр готовится к работе – вынимается из сумки-чехла.
Шкала прибора.
Если точнее, то здесь две шкалы.
Первая, расположенная снизу, позволяет измерить сопротивление от нуля до 50 МОм. (Если ближе к реальности – то зона точных измерений все же начинается примерно от 500 кОм) и выше. Отсчет у первой шкалы ведется справа-налево.
Вторая, верхняя шкала проградуирована слева направо, и данные по ней считываются в диапазоне от 50 МОм до 10 ГОм.
На лицевой панели корпуса прибора имеются два переключателя.
Левым устанавливается шкала, по которой будут сниматься показания, в зависимости от ожидающихся значений. При проверке сопротивления изоляции начинать замеры лучше сразу со второй шкалы, и лишь если получаемое значение меньше нижней границы диапазона (50 МОм) переходят на первую.
Правый переключатель - ответственный за установку значения калиброванного проверочного напряжения. В данной модели, как видно, три позиции – 500, 1000 и 2500 вольт.
Гнезда-разъемы для подключения измерительных проводов.
Про их «распиновку» уже говорилось выше.
Подключаются провода.
Одинарный – к гнезду «З» (или минус), второй, со сдвоенным концом – в гнезда «L (+)» и «Э» в соответствии с нанесенными на штекерах указателями.
На электродвигателе снимается крышка коммутационной коробки.
Видны винтовые клеммы для подключения трех фаз.
Зажим-«крокодил» провода, идущего от разъема мегомметра «З», крепится на корпусе электродвигателя.
Можно установить его на соответствующую клемму, или же непосредственно на металлический корпус, если отсутствие краски или других загрязнений гарантирует надежный контакт.
Устанавливаются переключатели в нужное положение - на вторую шкалу и на напряжение 500 вольт (хотя, конечно, надежнее было бы проверить на уровне в 1000 вольт).
Щуп или зажим-«крокодил» второго, контрольного провода устанавливается на клемму одной из обмоток.
Последовательность проверки фаз значения не имеет.
Если используется щуп, то работу лучше проводить с помощником, так как одному и удерживать контакт, и вращать рукоятку индуктора – неудобно, да и небезопасно.
Начинают вращать рукоятку генератора напряжения. Частота вращения – не менее 2 оборотов в секунду.
Стрелка на шкале прибора начинает менять свое положение.
В определенный момент зажигается сигнальная лампочка «ВН» - «Высокое напряжение». Это означает, что необходимый уровень калиброванного напряжения достигнут.
Но вращение при этом не прекращают до тех пор, пока положение стрелки не стабилизируется – и только потом снимают показания.
В данном примере она «зашкалила» за максимальное значение. То есть сопротивление изоляции проверяемой обмотки выше 10 ГОм. Отличный результат!
Щупы разряжают взаимным касанием одного к другому.
А затем аналогичным образом проверяют последовательно вторую и третью обмотки относительно корпуса.
Если все нормально, то за их изоляцию можно не беспокоиться.
Даже такой мегомметр, не имеющий функции мультитестера, позволяет сразу провести проверку и целостности «звезды». То есть – проводимость обмоток между собой.
Для этого левый переключатель переводят на первую, нижнюю шкалу.
«Крокодил» синего провода устанавливается на одну из фазных клемм двигателя.
Щуп второго провода – на одной из оставшихся клемм.
Вращают рукоятку динамо-машины, наблюдают за показаниями прибора.
Задействована нижняя шкала, то есть показывается сопротивление менее О МОм.
Конкретное значение в данном случае неважно – совершенно очевидно, что проводимость между этими двумя обмотками есть, в них нет обрыва.
То, что требовалось доказать!
Затем тестируется аналогичным образом вторая пара обмоток…
...и, наконец, третья.
Все возможные варианты проверены, и если результаты положительные, то «звезда» двигателя в полном порядке.
А итогом по обеим стадиям проверки становится закономерный вывод – по электротехнической части двигатель полностью пригоден к эксплуатации.

* * * * * * *

Безусловно, все варианты использования мегомметра показать сложно. А учитывая современное многообразие моделей – и вовсе невозможно. Значит, руководствоваться работе придется прилагаемой к прибору инструкцией. Но принципы проведения замеров и требования по обеспечению безопасности – существенных отличий не имеют.

В завершение публикации, чтобы несколько расширить информацию – небольшой видеообзор мегомметра MS5203 MASTECH.

Видео: Как работают с электронным мегомметром MS5203 MASTECH

Качество и надежность поставки электрической энергии на объекты во многом зависят от уровня сопротивления изоляции. В соответствии с установленными правилами использования электроприборов нужно периодически проводить проверки этого важного показателя. Измерение сопротивления изоляции почти выполняется с помощью такого прибора, как мегомметр.

Зачем нужен замер сопротивления изоляции

Время от времени изоляционные свойства кабелей претерпевают изменения из-за воздействия на них внешних факторов. Соответственно, работа оборудования в электроустановках нарушается.

Причины снижения уровня изоляции:

  • Локальные нагревы соединений контактов – тепло, нагревая материал, снижает свойства его изоляции;
  • Оседание пыли, грязи на корпусах электрических приборов;
  • Перегрев механизмов, обугливание корпусов после замыканий;
  • Большая влажность – конденсат, повреждения труб, затопления подвальных помещений приводит к появлению влаги на корпусах электрооборудования (кстати, это еще и опасно, так как вода, попадая на грязь и пыль, растворяет эти вещества, становясь проводником тока, вследствие чего может произойти замыкание);
  • Последствия монтажных работ, вследствие которых была нарушена проводка;
  • Неправильная эксплуатация электроприборов, инструментов и оборудования.

Учитывая все эти явления, проверка изоляции проводов – необходимое мероприятие, позволяющее выявить неисправности и предотвратить аварийные ситуации.

Мегаомметр: принцип работы и устройство прибора

Что такое мегаомметр, почему он так называется и каково назначение его пользования? Если расшифровать это слово, мы увидим, что его часть «мега» означает величину измерения, «ом» – единицы электросопротивления, а «метр» – измерять. Таким образом, становится ясно, что мегаометр – это прибор, каким производится испытание электрического сопротивления.

Иногда из этого слова выбрасывается буква «а» для лучшего созвучия звуков слова, но в этом случае искажается заложенный в названии смысл. Кстати, многие электрики называют этот прибор «мегером», а измерять сопротивление – сленговым словом «мегерить».

Внутреннее устройство мегаомметра:

  • Генератор тока;
  • Измеряющая головка;
  • Переключатель диапазона измерения;
  • Ограничивающие ток резисторы.


Чтобы выполнить замер, устройство поставляет в проверяемую цепь ток, причем он должен быть постоянным. Переменный тут не годится, так как линии кабелей имеют именно емкостные сопротивления, а конденсаторы умеют проводить переменный ток, что приведет к искажению итогов измерений.

Виды мегаомметров, исходя из напряжения:

  • 100 вольт – нужен для проверки изоляции низковольтных проводов;
  • 500 вольт – для электромашин малой мощности;
  • 1000 вольт – для бытовых осветительных приборов и розеточных модулей;
  • 2500 вольт – для высоковольтных аппаратов и воздушных линий.

Наиболее популярными считаются модели приборов: ЭС0202/2Г, М1101М, М4100, Ф4101, ЭСО 202/2Г, электронный ut512UNI-T.

Мегаоометром можно также прозвонить электродвигатель для проверки целостности его обмоток. Но в основном прозвонка двигателя или какого-либо другого оборудования осуществляется другим прибором – мультиметром.

Впрочем, какой прибор для чего подойдет можно прочитать в технической документации электрооборудования.

Выбор пределов замеров у мегомметров происходит на автомате, а напряжение для испытания выбирается переключателем или в меню прибора.

Кстати, некоторые мегомметры показывают результат уже через несколько секунд, в то время как истинным итогом считается сопротивление, показанное через 60 сек после начала испытания. Более того, у них нет возможности генерировать напряжение в течение длительного периода. Это тоже плохо, так как за короткое время можно не увидеть все дефекты проводки.

Работа с мегаомметром и правила безопасности

Измерить мегаомметром характеристики электрического оборудования для определения возможности его безопасной эксплуатации совсем несложно, но так как на выводах этого инструмента находится опасное напряжение, обязательно должна соблюдаться техника безопасности.

Какие меры безопасности должны предприниматься:

  • Пользоваться омметром могут только специально обученные люди;
  • Измеритель должен проходить ежегодную поверку у метрологов;
  • Заключение о годности проводки к дальнейшему использованию может выдавать только лишь электротехническая лаборатория, имеющая лицензию на такой вид деятельности;
  • Перед тем как начать работать, прибор следует проверить на целостность изоляции проводов, чтобы исключить риск электротравм;
  • Для защиты от напряжения используются специальные щупы с усиленной изоляцией – на их концах есть выделенная зона, к которой нельзя прикасаться открытым телом, иначе можно попасть под напряжение;
  • Во время измерений подключение к схеме происходит с использованием хорошо изолированных зажимов вроде «крокодила» – применять другие инструменты запрещено.

Кстати, следует иметь в виду, что измерение сопротивления своими руками возможно, но, согласно правилам, юридической силы оно не имеет. Поэтому если вам нужны протоколы – нужно вызвать специалистов. Для пожарной службы и энергонадзора еще могут понадобиться документы регистрации лаборатории, проводившей испытания.

В больницах, детских садиках, школах и иных общественных учреждениях сопротивление проводки должно выполняться регулярно, чтобы исключить аварийные ситуации.

Перед началом использования на мегаомметре устанавливают нужное напряжение, а затем проверяют исправность цепи и самого агрегата.

Методика проверки такова:

  • Вначале щупы коротко соединяются, и производится замер – прибор покажет ноль;
  • После чего щупы рассоединяются, и снова делается замер – будет бесконечность.

Это нужно делать, чтобы вовремя обнаружить сбитые настройки, порванные кабеля или поломку самого омметра.

Правила измерения предполагают замеры для кабельных линий между их жилами, учитывая все варианты:

  • Если кабель трехжильный – нужно три измерения;
  • Если четыре жилы – то шесть;
  • Если пять – десять.

Сопротивление изоляции и виды проводимых работ

Чтобы правильно выбрать мегаомметр, следует исходить из величины выходящего напряжения.

Есть две основных вида проверки:

  • Испытание изоляции;
  • Измерение сопротивления слоя диэлектрики.

Методы, описанные выше, отличаются временем проверки и величиной напряжения.

В первом случае на участок подается повышенное напряжение, чтобы создать экстремальную ситуацию. Время испытательного процесса длится долго. Такой способ позволяет выявить все неисправности изоляции, а также предупредить их появление в процессе использования.

Во втором случае напряжение подбирается на порядок меньше, а время замера варьируется до окончания заряда проверяемого участка.

Иногда случается так, что мегаомметра для проверяющих целей мало – в таком случае можно прибегать к помощи других установок и электроинструмента.

Инструкция: как пользоваться мегаомметром

Как же выполнить замер сопротивления изоляции, к примеру, силового щита? Этот процесс делится на подготовку, выполнение измерений и заключительную часть.

Порядок действия во время подготовки:

  • Подготавливается схема электрической установки, и предусматриваются меры, предупреждающие ее поломку;
  • Подготавливаются защитные средства, а также измеряющий напряжение агрегат;
  • Участок, подлежащий проверке, выводится из работы.


Во время проведения измерений нужно правильно пользоваться мегаомметром. Перед самой работой нужно убедиться, что прибор исправен: к нему подключают измерительные провода и соединяют их. А затем дают напряжение от трансформатора и записывают показания.

Измеряющий прибор должен проверить цепь и показать ноль. Далее концы разводятся в разные стороны и снова выполняют замер. Шкала прибора должна показать бесконечность.

Сопоставляя эти показания, делаются выводы о готовности мегаомметра к работе.

Руководство по применению аппарата:

  • Вначале подсоединяется заземление к контуру земли;
  • Далее идет проверка отсутствия напряжения на нужном участке;
  • Затем устанавливается заземление на время работы агрегата;
  • Собирается схема измерения прибора;
  • Заземление убирается;
  • Напряжение подается на схему до начала выравнивания заряда;
  • Начинается отсчет, после которого напряжение убирается;
  • Для снятия заряда накладывается заземление;
  • Отключается соединительный провод от схемы;
  • Убирается заземление.

Сопротивление измеряется при наибольшей величине мегаомов. Если же величины не хватает – переходят на способы с более точными диапазонами.

Сопротивление при горизонтальном корпусе замеряют, используя стрелочный мегаомметр. Если это нарушить – появится дополнительная погрешность. Кстати, современный цифровой прибор, собранный по новым технологиям, не боится такого явления.

Остается написать и составить протокол, в котором есть описание условий и номера используемых агрегатов.

На заключительном этапе все цепочки восстанавливаются, защитные приспособления снимаются, а схема снова вводится в работу.

Как пользоваться мегаомметром (видео)

Пользоваться мегаомметром очень удобно для прозвонки различных двигателей или измерения напряжения. Можно сделать самодельный агрегат и использовать его для работы. Но все же будет лучше, если ремонт и непосредственно процесс замера, вы доверите специалистам.

Мегаомметр– специализированный прибор, предназначенный для выполнения замеров сопротивления. В отличие от омметра, данное устройство получило название вследствие особенностей функционального назначения устройства. «Мега» означает тысяча, а это значит, что прибор применяется с целью нахождения сопротивлений высоких значений. Поэтому устройство обеспечивает генерацию напряжений, благодаря которым и осуществляется измерение.

В большинстве случаев мегаомметр необходим для выяснения величин сопротивления в электроизоляции кабелей, электроцепей, трансформаторных установок, электродвигателей и других электрических установок. Изоляция представляет материал, который препятствует протеканию электротока в ненужном направлении. Необходимость проверки изоляции токопроводящих частей вызвана тем, чтобы не было короткого замыкания, возгорания, а также поражения людей электротоком.

Виды

Мегаомметр бывает двух основных видов, они различаются методом измерения, а также типом источника питания.
  • Аналоговые . Их часто именуют стрелочными устройствами. Главная их особенность в том, что в них встроена индивидуальная динамо-машина, которая запускается с помощью кругового движения рукоятки. Также предусмотрена шкала со стрелкой. Сопротивление измеряется благодаря магнитоэлектрическому действию. Стрелка крепится на оси, на которой также находится рамочная катушка, на которую действует магнитное поле постоянного магнита. Когда ток протекает по катушке, то наблюдается отклонение стрелки на некоторый угол. Величина угла зависит от напряжения и силы тока. Возможность подобного измерения определяется законом электромагнитной индукции.

К преимуществам стрелочного устройства относятся надежность и неприхотливость. В то же время прибор является морально устаревшим, ведь данный агрегат имеет существенные размеры и большую массу.

  • Цифровые . Данные измерители наиболее распространены. В них установлен мощный генератор импульсов, который работает с помощью полевых транзисторов. Подобные устройства оснащаются источником питания, они производят преобразование переменного тока в постоянный. В качестве источника тока может использоваться сеть либо аккумулятор. Измерение сопротивления осуществляется с помощью усилителя посредством сравнения падения напряжения в электроцепи с сопротивлением эталона.

Показатели отражаются на экране. В большинстве случаев предусмотрено сохранение результатов в памяти, дабы в дальнейшем была возможность сравнить данные. Электронное устройство имеет малый вес и небольшие габариты, благодаря чему можно выполнять разные электрические измерения. Но, чтобы работать с таким устройством, требуется достаточно высокая квалификация пользователя.

Кроме того, устройства отличаются друг от друга генерируемым напряжением и пределами измерений:
  • Рабочее напряжение достигает 500 Вольт и предела в 500 МОм;
  • 1000 Вольт и предела в 1000 МОм.
  • 2500 Вольт и предела в 2500 МОм.

Также устройства отличаются классом точности. Например, устройство М4100, которое пользуется значительной популярностью у профессионалов, функционирует с погрешностью максимум 1%. Ф4101 выделяется погрешностью не выше 2,5%. Данные показатели следует учитывать в особенности там, где нужна большая точность определения сопротивления. Подбирать средство для испытаний и тестирования электросистемы следует с учетом сопротивления и иных показателей.

Устройство
Мегаомметрлюбого вида имеет следующие элементы:

В стрелочных устройствах напряжение создается динамомашиной, которая заключена в корпус. Динамомашина запускается благодаря пользователю, который крутит ручку устройства с установленной частотой. В большинстве случаев частота вращении должна составлять двум оборотам в секунду. Цифровые устройства питаются от электросети, но в то же время могут работать от или . Функционирует устройство благодаря закону Ома, который определяет силу тока как отношение напряжения к сопротивлению. Устройство мерит электроток, протекающий между двумя включенными объектами, к примеру, жила-земля, 2 жилы и так далее. Измерения осуществляются эталонным напряжением, оно известно наперед. Мегаомметр, учитывая напряжение и ток, легко определяет сопротивление изоляционного слоя, которое измеряет.

В качестве источника постоянного напряжения выступает генератор постоянного тока. Чтобы менять пределы измерения, предусмотрен тумблер-переключатель, который дает возможность коммутировать разные резисторы. Благодаря этому можно менять режим работы и выходное напряжение.

Принцип действия

Каждый материал, который не проводит ток, имеет сопротивление изоляции. Со временем она устаревает, либо повреждается. При этом повреждения могут возникать внезапно, иногда их невозможно увидеть. Однако процесс может привести к выходу из строя применяемого оборудования, могут возникнуть замыкания и пожары. К тому же отсутствие изоляции может повлечь появлению на электрическом оборудовании напряжения, которое будет опасно для жизни человека.

Именно для таких измеренй применяется мегаомметр, он создает на измерительных выводах напряжение необходимой величины, чтобы измерить ток, который проходит по цепи. Изначально для генерации напряжений применялись электромеханические машины. Необходимо было вращать рукоятку, дабы генератор вырабатывал напряжение. Главное достоинство таких устройств в том, что им не нужна сеть либо батарея. Измерительная система здесь аналоговая, применяется стрелка, которая демонстрирует показания на шкале.

Также существуют электронные приборы и микропроцессорные устройства. Последние включают измерители тока и напряжения, жидкокристаллический дисплей, микроконтроллер, клавиатуру, источник питания, импульсный преобразователь напряжения. С клавиатуры задается значение испытательного напряжения, после чего генератор создает импульсы тока. Проводятся измерения, полученное значение применяется для вычисления измеряемого сопротивления. Устройство имеет несколько диапазонов измерений, которые переключаются автоматически с помощью изменения коэффициента передачи.

Активный выпрямитель выполняет преобразование переменного тока в постоянный. Напряжение постоянного тока при измерении сопротивления преобразуется в дискретную форму посредством преобразователя частоты напряжения, после чего оно направляется в микроконтроллер. В микроконтроллере происходит обработка команд, которые идут с клавиатуры. Далее идет управление генератором, автоматическим переключением диапазонов. Микроконтроллер вычисляет и запоминает значения измеряемых сопротивлений.

В большинстве случаев в устройстве применяется двухстрочный жидкокристаллический дисплей. Стандартные сервисные функции экрана включают индикатор разряда батареи и выключателя питания в случае отсутствия манипуляций. Корпус выполняется из прочного диэлектрического пластика, на панели спереди располагается клавиатура и индикатор гнезда, куда подключается измерительные щупы. На торце корпуса находится разъем, предназначенный для подключения адаптера. Питание устройства осуществляется от встроенного аккумулятора. Подзарядка батареи осуществляется от бытовой электрической сети в 220 вольт.

Применение

Мегаомметрнаходит следующее применение:
  • Измерение изоляции электрических приборов, а также установок во время наладки и обслуживания в промышленных и лабораторных условиях.
  • Измерение сопротивления разъемов, изоляционных материалов, в том числе обмоток электромашин. В большинстве случаев устройство используется для проверки изоляции.
  • Измерение сопротивлений с целью проведения расчетов коэффициентов абсорбции, а также поляризации.

При работе мегаомметр создает напряжение, которое может быть опасным для пользователя. Поэтому следует проявлять осторожность. Для начала нужно обесточить оборудование или кабели, в которых нужно провести измерение сопротивления. В промышленности для работы с устройством допускаются только специалисты, которые имеют группу электробезопасности не меньше третьей. Во время измерения изоляции оборудования, к примеру, электрических двигателей, необходимо отключить их от сети. Затем цепи нужно заземлить. С этой целью к шине заземления подключается многожильный провод с хорошей изоляцией.

Как же все таки правильно называется этот прибор для измерения сопротивления изоляции Мегаомметр или Мегомметр?! Этим вопросом наверное задавался почти каждый пользователь прибора. И вроде как от названия суть работы и измерений не измениться, но хочется, же не только правильно измерять, но и говорить.

Если искать в интернете, как правильно назвать прибор для измерения сопротивления изоляции в сети, то можно встретить название как «мегаомметр» так и «мегомметр». Так как интернет подстраивается под запросы людей, то истину здесь искать бесполезно. Википедия гласит о том, что прибор называется «мегомметр», но название это устарело и нужно использовать «мегаомметр», то есть ситуация особо не проясняется.


Мегаомметр UNI-T UT502A


Чтобы все-таки выяснить, как же назвать это устройство нужно вернуться, так сказать к первоисточнику, в этом случае к заводу производителю.

Как оказалось, мегомметры в 1957 году начал выпускать Уманский завод, который называется «Мегомметр». Но вот, казалось бы, все, докопались до истины, но не тут-то было, на приборах, которые производит завод, красуется надпись «мегаомметр».

Если совсем уж интересно можно поискать книги об этом устройстве, чтобы облегчить Вам задачу, скажу. В книгах написано «мегомметр», правда, год выпуска изданий 1963. В современных книгах встречается чаще название «Мегаомметр».

И опять непонятно как же правильно назвать это чудо-устройство, которое во многом помогает и облегчает жизнь электрика Мегаомметр или Мегомметр.


Мегаомметр ЭС0202/2Г


Прибор, который измеряет мегаомы, гигаомы, а теперь и больше по логике, должен называться все-таки Мегаомметр. Но логика вещь спорная, исходя из этого всего, можно сделать вывод, что не особо важно как Вы называете устройство Мегаомметр или Мегомметр. Главное чтобы перед использованием Вы внимательно изучали и7нструкцию по эксплуатации и придерживались правил техники безопасности. А название, это всего лишь название, важнее точные и четкие измерения.

При этом, если будете заполнять документы, то нужно писать «Мегаомметр», так гласит Википедия, а то по ГОСТу не положено. Из этого напрашивается вывод, что правильно будет Мегаомметр. Но если Вы привыкли говорить все время Мегомметр, то переучиваться не стоит, Вас и так поймут.

Чтобы измерить значение сопротивления, а также выявить дефекты кабелей и проводок электрических сетей, используют специально разработанное для этого приспособление мегаомметр.

В названии аппарата ясно распознаются три слова:

“Мега”, ” Ом”, и ”Метр”, где первое слово подразумевает значение измеряемой величины, второе -- единицу измерения и третье производное от слова “измерить”.

В основе рабочего процесса мегаомметра лежат принципы закона Ома, касающиеся участков электрической цепи, поэтому любая модификация прибора содержит во внутренней части корпуса:

  • измерительную систему тока (амперметр);
  • набор выходных клемм;
  • генератор постоянного напряжения.

Конструктивные особенности генераторов напряжения могут изменяться в довольно широких границах. В основу их производства положены простые ручные динамо-машины, которые использовались раньше. Современные генераторы оснащены встроенными или внешними источниками питания.

Показатели выходной мощности и напряжения генератора могут варьироваться в пределах нескольких интервалов, а также иметь единственную, фиксированную величину.

Соединительные провода с одной стороны подключают к клеммам мегаомметра, а с другой фиксируют в измеряемой цепи при помощи “крокодилов”. Это специальные приспособления, предназначенные для более надежного соединения.

С помощью амперметра, который встроен внутри агрегата, измеряют показатели проходящего по цепи тока.

Обратите внимание! с известным и проградуированным напряжением генератора калибруются также единицы сопротивления, то есть на шкале, расположенной на измерительной головке, показаны мегаомы, килоомы или и те и другие вместе.

На шкале одного из самых надежных проверенных аналоговых мегаомметров, выпущенных около пятидесяти лет назад М4100/5, расположено две шкалы, что позволяет выполнить замер на двух границах. Новые технологии отображают показания сопротивления более наглядно. На цифровой дисплей выводится уже обработанный цифровой сигнал.

Стрелочный мегаомметр и его устройство

Упрощенная электрическая схема, характерная для аналоговых приборов оснащена такими составными частями:

  • генератором постоянного тока;
  • измерительной головкой, которая состоит из двух взаимодействующих рамок (рабочая и противодействующая);
  • тумблером-переключателем между пределами измерений, который позволяет регулировать работу различных резисторных цепочек, предназначенных для коррекции выходного напряжения и режимов работоспособности головки;
  • токоограничивающего резистора.

В свою очередь диэлектрический герметичный прочный корпус данного агрегата оснащен:

  • ручкой для комфорта в транспортировке;
  • складной портативной рукояткой генератора, вращая которую вырабатывают напряжение;
  • рычагом, с помощь которого переключают режимы измерения;
  • выходными клеммами, предназначенными для работоспособности всей схемы (к клеммам подключаются соединительные провода).

У большинства моделей мегаомметров имеются три выходные клеммы для подключения. Каждая из них имеет название: земля (З), линия (Л) и экран (Э).

З и Л предназначены для замеров сопротивления изоляции. Э – для того чтобы ликвидировать влияние токовых потерь в случае проведения замера в области двух параллельно проходящих жил кабелей.

В комплектацию прибора входит специальный измерительный провод с характерной конструкцией и экранированным концом, оборудованным двумя клеммами. На одной из них есть маркировка в виде буквы “Э”. Что это значит? Это значит: что ее следует подключить к соответствующей клемме, расположенной на мегаомметре.

Для мегаомметров, основанных на работе внешней сети, характерен тот же принцип работы, ручка здесь уже не крутится, то есть для того чтобы выдать напряжение для испытываемой схемы следует просто удерживать специально предназначенную для этого кнопку. Прибор, способный выдавать не одну комбинацию напряжения, оснащен соответственно несколькими кнопками. Их может быть две, три… даже несколько наборов сочетаний. Такие мегаомметры имеют более сложное внутреннее устройство.

Обратите внимание! Приборы обладают повышенным напряжением, поэтому при их использовании следует соблюдать технику безопасности.

Халатное отношение в работе с высоким уровнем опасности недопустимо. Так как же правильно пользоваться мегаомметром? Из всего вышеописанного вывод напрашивается сам собой:

Согласно мерам безопасности при работе с мегаомметром возможность производить замеры получает только специально обученный и подготовленный человек. Его специализация должна позволять проводить ремонтные работы электроустановок, находящихся под напряжением.

При замере испытуемой схемы соединительные провода и клеммы обладают повышенным напряжением, поэтому работа с ними обязывает пользоваться специальными щупами. Они устанавливаются в области измерительных проводов, поверхность которых усиленно изолирована.

Действие остаточного заряда

Работающий генератор мегаомметра выдает напряжение, поэтому контур земли образует разные значения потенциалов, благодаря которым создается подобие ёмкости, обладающей определенным зарядом. После проведения измерений в проводе остается какая-то часть ёмкостного заряда. Как только человек прикасается к данному участку, электрическая травма обеспечена, поэтому постоянное использование дополнительных мер безопасности не будет лишним, а именно:

  • переносное заземление;
  • изолированная рукоятка;
  • прежде чем подключить прибор к испытуемой схеме следует проверить наличие в ней напряжения, а также остаточного заряда с помощью вольтметра.

Как обеспечить безопасность работы с мегаомметром

Работа выполняется исключительно с помощью исправных мегаомметров (проверен и испытан в условиях специально предназначенной для этого метрологической лаборатории). Поверка позволяет владельцу агрегата обладать специальным сертификатом, который дает ограниченное во времени право на проведение работ, то есть до определенного срока годности. После поверки на корпус прибора специалист наносит клеймо, свидетельствующее о проведенной контрольной поверке. Клеймо содержит дату и номер проверяющего. В обязанности владельца мегаомметра входит соблюдение целостности клейма, так как именно оно дает право на проведение последующих измерений. Нет клейма, значит: прибор не исправен!

При выполнении нескольких замеров подряд в десятижильном кабеле следует постоянно использовать переносное заземление, а также снимать остаточный заряд после каждого замера. Быстрая и безопасная работа с мегаомметром обеспечивается путем соединения одного конца заземляющего проводника с контуром заземления до завершения всех работ. Второй конец проводника крепят на изоляционную штангу, которая предназначена для удобства многоразового накладывания заземления, чтобы безопасно снять остаточный заряд.

Как подключить мегаомметр?

Для каждой модели приборов данного назначения определена величина выходного напряжения, поэтому чтобы эффективно испытать изоляцию или измерить ее сопротивление требуется правильно подобрать мегаомметр.

Для проверки изоляции кабеля мегаомметром создают так называемый экстремальный случай, при котором на испытуемый участок подают напряжение выше номинального, но в допустимых нормах, прописанных в технической документации.

Например: генератор мегаомметра может выдавать:

  • 100V;
  • 250V;
  • 500V;
  • 700V;
  • 1000V;
  • 2500V.

Соответственно подача напряжения должна быть на порядок большей.

Длительность процесса измерения обычно не превышает 30 секунд или минуты, это необходимо для более точного выявления дефектов, а также исключения их последующего появления при перепадах напряжения в сети.

Основа технологического процесса измерения сопротивления это: подготовка к процессу, его выполнение и финальный этап. Каждый из них включает определенный перечень манипуляций необходимых для достижения поставленной цели без ущерба для окружающих и в первую очередь для себя.

При подготовке к работе следует организовать свои действия, изучить схему электрической установки, чтобы исключить возможную поломку, а также обеспечить свою безопасность.

Начиная работу, следует прежде проверить прибор на исправность. Для этого выводы соединяют с измерительными проводами. Затем их концы соединяют друг с другом пытаясь закоротить. После подачи напряжения замеряют показания измерений (они должны быть равны нулю). Следующий этап предусматривает повторный замер. В случае отсутствия неисправностей показание должно отличаться от предыдущего.

Затем подсоединяют переносное заземление к контуру земли, проверяют и обеспечивают отсутствие напряжение на участке, устанавливают переносное заземление, собирают схему измерения прибора, снимают переносное напряжение, снимают остаточный заряд, отключают соединительный провод, снимают переносное напряжение.

Финальный этап предусматривает восстановление разобранных цепочек, снятие шунтов и закороток, а также подготовку схемы к рабочему режиму. Документируют полученные результаты измерений сопротивления изоляционного слоя в акте поверки изоляции.

Лучшие статьи по теме