Компьютерная грамотность
  • Главная
  • Браузеры
  • Подключение фоторезистора к ардуино и работа с датчиком освещенности. RGB-ночник на базе Arduino Код для "умной лампы"

Подключение фоторезистора к ардуино и работа с датчиком освещенности. RGB-ночник на базе Arduino Код для "умной лампы"

Наверное, у каждого в детстве была мечта (и не одна). Можно попытаться даже вспомнить то чувство, которое переполняет душу ребенка при исполнении его мечты или тот далекий знакомый блеск в глазах… Я же в детстве мечтала иметь свой ночник.

Сейчас я учусь на 4ом курсе БГУИР и когда нам сообщили, что курсовой проект по схемотехнике можно сделать не на бумаге, а на железяке, меня осенило: ночник, который так желался в детстве, можно сделать самой. Причем сделать не просто объект, который будет освещать комнату в темное время суток, а устройство, каким можно будет с легкостью управлять под любое настроение. А почему бы и нет? Я решила добавить возможность менять цвета с помощью рук: чем ближе рука подносится к ночнику, тем ярче горит один из цветов (RGB). А также хотелось бы управлять ночником с помощью пульта ДУ.

Сразу признаюсь, что идею я подсмотрела на сайте cxem.net . Если вкратце, в этом примере использовалась RGB-матрица, которая управлялась с помощью регистров сдвига, и ультразвуковые датчики расстояния. Но я подумала, что матрица светит исключительно в одну сторону, мне же хотелось, чтобы ночник светил по сторонам.

Обоснование элементов схемы


Я обратила свое внимание на микроконтроллеры Arduino. UNO вполне подходящий вариант для моей задумки, во-первых потому что это наиболее популярная платформа и количество пинов не слишком велико, в отличие от Mega, во-вторых к ней можно подключить внешний источник питания, в моем случае он 12В, в отличие от Nano, в третьих… ну думаю можно остановиться на этих двух пунктах. Платформа пользуется огромной популярностью во всем мире благодаря удобству и простоте языка программирования, а также открытой архитектуре и программному коду.

Более подробную информацию о данной плате можно с легкостью найти на просторах интернета, так что не буду перегружать статью.

Итак, основные требования, предъявляемые системе. Необходимы:
– датчики, которые будут отслеживать расстояние до преграды для управления системой;
– датчик для считывания сигналов с пульта дистанционного управления;
– светодиоды, которые и будут обеспечивать необходимую функциональность освещения;
– управляющий блок, который будет управлять всей системой.

В качестве датчиков расстояния для проекта необходимы дальномеры, каждый из которых будет соответствовать определенному цвету: красный, зеленый, синий. Датчики расстояния будут следить за расстоянием руки до ночника и, чем ближе рука будет подноситься к определенному датчику, тем сильнее будет гореть цвет, соответствующий этому дальномеру. И наоборот, чем дальше рука, тем меньше подается напряжение на цвет, соответствующий датчику.

Наиболее популярные дальномеры на данный момент это Sharp GP2Y0A21YK и HC-SR04. Sharp GP2Y0A21YK - это инфракрасный дальномер. Он оснащен ик-излучателем и ик-приемником: первый служит источником луча, отражение которого ловит второй. При этом ик-лучи датчика для человеческого глаза невидимы и при такой интенсивности безвредны.

По сравнению с ультразвуковыми датчиком HC-SR04, у этого датчика есть и достоинства, и недостатки. К достоинствам можно отнести нейтральность и безвредность. А недостатки - меньший радиус действия и зависимость от внешних помех, в том числе - некоторых типов освещения.

В качестве датчиков расстояния для проекта использованы ультразвуковые дальномеры HC-SR04.
Принцип действия HC-SR04 основан на хорошо известном явлении эхолокации. При его использовании излучатель формирует акустический сигнал, который отразившись от преграды, возвращается к датчику и регистрируется приемником. Зная скорость распространения ультразвука в воздухе (примерно 340м/с) и время запаздывания между излученным и принятым сигналом, легко рассчитать расстояние до акустической преграды.

Вход TRIG подключается к любому выводу микроконтроллера. На этот вывод нужно подавать импульсный цифровой сигнал длительностью 10 мкс. По сигналу на входе TRIG датчик посылает пачку ультразвуковых импульсов. После приема отраженного сигнала, датчик формирует на выводе ECHO импульсный сигнал, длительность которого пропорционально расстоянию до преграды.

Ик-датчик. Разумеется, с данного датчика будет считываться и декодироваться сигнал, необходимый для дистанционного управления. TSOP18 отличаются между собой только по частоте. Для проекта выбран датчик VS1838B TSOP1838.

В основе проекта лежала идея об освещении помещения любым цветом, это говорит о том, что понадобятся 3 основных цвета из которых будет получено освещение: красный, зеленый, синий. Поэтому была выбрана модель светодиодов SMD 5050RGB, которые отлично справятся с поставленной задачей.

В зависимости от величины напряжения, подаваемого на каждый светодиод, они будут менять интенсивность этого освещения. Светодиод должен быть подключен через резистор, иначе рискуем испортить не только его, но и Arduino. Резистор нужен для того, чтобы ограничить ток на светодиоде до приемлемой величины. Дело в том, что внутреннее сопротивление светодиода очень низкое и, если не использовать резистор, то через светодиод пройдет такой ток, который попросту спалит и светодиод, и контроллер.

Планки со светодиодами, которые используются в проекте, питаются от 12В.

В связи с тем, что напряжение на светодиодах в «выключенном» состоянии равно 6В и необходимо регулировать питание, которое превосходит 5В, в схему необходимо добавить транзисторы в ключевом режиме. Мой выбор пал на модель BC547c.

Рассмотрим вкратце, для тех, кто подзабыл, принцип работы n-p-n транзистора. Если напряжение не подавать вовсе, а просто взять и замкнуть выводы базы и эмиттера пусть даже и не накоротко, а через резистор в несколько Ом, получится, что напряжение база-эмиттер равно нулю. Следовательно, нет и тока базы. Транзистор закрыт, коллекторный ток пренебрежительно мал, как раз тот самый начальный ток. В этом случае говорят, что транзистор находится в состоянии отсечки. Противоположное состояние называется насыщение: когда транзистор открыт полностью, так, что дальше открываться уже некуда. При такой степени открытия сопротивление участка коллектор эмиттер настолько мало, что включать транзистор без нагрузки в коллекторной цепи просто нельзя, сгорит моментально. При этом остаточное напряжение на коллекторе может составить всего 0,3…0,5В.

Эти два состояния – насыщение и отсечка, используются в том случае, когда транзистор работает в ключевом режиме наподобие обычного контакта реле. Основной смысл такого режима в том, что малый ток базы управляет большим током коллектора, который в несколько десятков раз больше тока базы. Большой ток коллектора получается за счет внешнего источника энергии, но все равно усиление по току, что называется, налицо. В нашем случае, микросхема, рабочее напряжение которой 5В, включает 3 планки со светодиодами, работающими от 12В.

Рассчитаем режим работы ключевого каскада. Требуется рассчитать величину резистора в цепи базы, чтобы светодиоды горели в полную мощность. Необходимое условие при расчете, чтобы коэффициент усиления по току был больше либо равен частному от деления максимально возможного тока коллектора на минимально возможный ток базы:

Поэтому планки могут быть на рабочее напряжение 220В, а базовая цепь управляться от микросхемы с напряжением 5В. Если транзистор рассчитан на работу с таким напряжением на коллекторе, то светодиоды будут гореть без проблем.
Падение напряжения на переходе база-эмиттер 0,77В при условии, что ток базы 5мА, ток коллектора 0,1А.
Напряжение на базовом резисторе составит:

По Закону Ома:

Из стандартного ряда сопротивлений выбираем резистор 8,2 кОм. На этом расчет закончен.

Хочу обратить ваше внимание на одну проблему, с которой я столкнулась. При использовании библиотеки IRremote Arduino зависал при регулировании синего цвета. После долгого и тщательного поиска в интернете оказалось, что данная библиотека использует по умолчанию таймер 2 для этой модели Arduino. Таймеры используются для управление выходами ШИМ.

Tаймер 0 (Системное время, ШИМ 5 and 6);
Tаймер 1 (ШИМ 9 и 10);
Tаймер 2 (ШИМ 3 и 11).

Первоначально у меня был использован ШИМ 11 для регулирования синего цвета. Поэтому будьте внимательны при работе с ШИМ, таймерами и сторонними библиотеками, которые могут их использовать. Странно, что на главной странице на гитхабе об этом нюансе не было ничего сказано. При желании вы можете раскомментировать строчку с таймером 1 и закомментировать 2.

Подключение элементов на макетной плате выглядит следующим образом:

После тестирования на макетке начались фазы «Размещение элементов на плате» и «Работа с паяльником». После первого тестирования готовой платы в голову закрадывается мысль: что-то пошло не так. И тут начинается знакомая многим фаза «Кропотливая работа с тестером». Однако неполадки (случайно спаялись несколько соседних контактов) были быстро устранены и вот он долгожданный озорной огонек светодиодов.

Далее дело стояло только за корпусом. По этому поводу были выпилены фанерки с отверстиями для наших датчиков. Задняя крышка делалась специально съемной, чтобы можно было насладиться видом изнутри и, при желании, что-то доделать или переделать. Также в ней имеются 2 отверстия для перепрограммирования платы и питания.

Корпус клеился на двухкомпонентном эпоксидном клее. Стоит отметить особенность данного клея, для тех, кто с ним раньше не встречался. Данный товарищ поставляется в двух отдельных емкостях, при смешивании содержимого которых происходит моментальная химическая реакция. После смешивания действовать приходится быстро, в пределах 3–4 минут. Для дальнейшего использования нужно смешать новую порцию. Так что если пытаетесь это повторить, мой вам совет, смешивать маленькими порциями и действовать весьма быстро, время на подумать будет не так уж и много. Поэтому стоит заранее продумать, как и где склеить корпус. Причем за один присест это сделать не получится.

Для крепления планок со светодиодами в верхнюю крышку была вставлена трубка через которую прекрасно прошли все провода.

Когда возник вопрос с абажуром, я вспомнила как в детстве делала поделки из простой нитки, клея и воздушного шарика, который служил основой. Принцип для абажура взят тот же, однако обматывать многогранник оказалось сложнее, чем шарик. За счет давления, оказываемого нитками на конструкцию, кверху она начала сужаться и нитки стали опадать. Экстренно, с руками в клею, было принято решение укрепить конструкцию сверху. И тут пришел на помощь компакт диск. В итоге получился вот такой ночник:

Что хочется сказать в итоге

Чтобы я изменила в проекте? Для подачи сигнала TRIG датчиков расстояния можно было бы использовать один выход Arduino вместо трех. Так же я бы предусмотрела отверстие для ик-датчика (о котором я забыла), который пока, увы, спрятан в корпусе из которого он, естественно, не может считывать сигналы с пульта. Однако, кто сказал, что нельзя ничего перепаивать и сверлить?

Хочется отметить, что это был интересный семестр, и отличная возможность попробовать сделать что-то не на бумаге, благодаря чему я могу поставить еще одну галочку около пункта «детская мечта». И если вам кажется, что пробовать что-то новое сложно, и вы не знаете за что первым делом взяться, не стоит переживать. У многих в голове пролетает мысль: с чего бы тут начать и как это вообще можно сделать? В жизни много возникает задач от которых можно растеряться, но стоит только попробовать как вы заметите, что с огоньком в глазах вы можете свернуть горы, пусть даже для этого придется немножко постараться.

Для нашего следующего проекта мы будем использовать фоторезистор. А рассмотрим мы реализацию ночника в спальню, который будет автоматически включаться когда темно и выключаться когда становится светло.

Сопротивление фоторезистора зависит от света, попадающего на него. Используя фоторезистор в связке с обычным резистором 4.7 кОм, мы получаем делитель напряжения, в котором напряжение проходящее через фоторезистор, изменяется, в зависимости от уровня освещенности.

Напряжение с делителя, мы подаем на вход АЦП Arduino. Там мы сравниваем полученное значение с определенным порогом и включаем или выключаем светильник.

Принципиальная схема делителя показана ниже. Когда освещенность увеличивается, сопротивление фоторезистора падает и соответственно на выходе делителя (и входе АЦП) напряжение увеличивается. Когда освещенность падает все наоборот.

На фото ниже, показана собранная схема на макетной плате. Напряжения 0В и 5В берутся с Arduino. Ножка А0 используется как вход АЦП.

Ниже показан скетч Arduino. В данном уроке мы просто включаем и выключаем LED, который встроен в плату Arduino. Более яркий LED-светодиод, вы можете подключить к ноге 13 (через резистор ~220 Ом). Если будете подключать более мощную нагрузку, такую как лампу накаливания, то ее следует подключать через реле или тиристор.

В коде программы есть закомментированные участки, они служат для отладки. Можно будет контролировать значение АЦП (от 0 до 1024). Также, необходимо в коде изменить значение 500 (порог включения и выключения) на то, которое вы подберете опытным путем, изменяя освещенность.

/* ** Ночник ** ** www.hobbytronics.co.uk */ int sensorPin = A0; // устанавливаем входную ногу для АЦП unsigned int sensorValue = 0; // цифровое значение фоторезистора void setup() { pinMode(13, OUTPUT); Serial.begin(9600); // старт последовательного вывода данных (для тестирования) } void loop() { sensorValue = analogRead(sensorPin); // считываем значение с фоторезистора if(sensorValue<500) digitalWrite(13, HIGH); // включаем else digitalWrite(13, LOW); // выключаем // Для отладки раскомментируйте нижеследующие строки //Serial.print(sensorValue, DEC); // вывод данных с фоторезистора (0-1024) //Serial.println(""); // возврат каретки //delay(500); }

Всем привет! Я - Артем Лужецкий и я буду вести серию статей посвященных "Умному дому" и IoT (англ. - Internet of Things, интернет вещей). Мы познакомимся с удивительными способами создания домашней сети из разнообразных устройств, которые будут работать либо автономно, либо при помощи человека. Ну что? Приступим!

Первая статья ознакомительная, я хочу, чтобы вы поняли, что я буду работать с самыми распространенными платами и модулями, чтобы большинство людей могло попробовать себя в разработке IoT.

Итак, для начала нам потребуются два микроконтроллера, которые мы будем использовать: и .

Arduino UNO

Я думаю не надо знакомить вас с этой платой, она очень популярна среди начинающих и поклонников DIY. Скажу только то, что способности этой платы ограничены и UNO не может работать с протоколом https, не хватает вычислительной мощности микроконтроллера ATmega328P, поэтому, когда нам придется работать с микроконтроллером и протоколом https, то мы будем программировать ESP8266.

ESP8266

Я буду работать с Troyka-модулем ESP8266 от компании "Амперка", но можно спокойно использовать и обычный модуль ESP 8266, они практически не имеют отличий, главное при подключении посмотреть значение пинов и запомнить, что ESP работает по 3,3 вольтовой логике, поэтому нужно либо подключать через 5 вольт, но подключить в схему стабилизатор напряжения, либо просто использовать пин со подачей напряжения в 3,3 вольта.

Данный микроконтроллер не самый мощный в серии компании Espressif на общем рынке, но он один из самых дешевых и распространенных. Он будет основой наших IoT разработок.

Дополнительные детали

Также нам потребуется для создания всех опытов:

  1. Светодиоды
  2. Фоторезистор
  3. Термистор
  4. Ультразвуковой дальномер
  5. Пьезодинамик
  6. Мини Сервопривод
  7. ИК - датчик
  8. ИК - пульт

Не нужно иметь все эти модули, чтобы работать с IoT, но для того, чтобы сделать все будущие проекты, нам со временем придется приобрести их все.

Программы и библиотеки

Первое - скачайте библиотеку, которая поможет вам намного проще работать в Arduino IDE, если вы используйте ESP8266 - http://wiki.amperka.ru/_media/iot-m:iot-m-libs.zip

Второе - для лучшего ознакомления с IoT нам потребуется веб-сайты, которые предоставят нам возможность отправлять на них данные.

  1. www.dweet.io
  2. maker.ifttt.com
  3. narodmon.ru
  4. и т.д.

Третье - также нам пригодятся различные приложения на андройд, чтобы с помощью телефона мы могли управлять умным домом.

  1. OpenHab
  2. Blink
  3. и т.д.

Подробно со всеми способами, программами и сайтами мы познакомимся уже в ближайших проектах.

2. Делаем "умную лампу"

Я уже заставил вас скучать? Сделаем самую простую умную лампу, которая будет включатся, если в комнате темно.

На самом деле для этого даже не нужна UNO, можно использовать цифровой настраиваемый фотодатчик, но в будущим мы изменим этот проект до неузнаваемости, поэтому придется с чего-то начать.

Если вы не уверены в том, что готовы работать с электричеством в 220 вольт, то используйте вместо фонаря обычный светодиод. В начале я взял свою старую лампу TLI – 204, такие есть практически в любом магазине (отключил заранее от сети).

У лампы два вида работы (светит/не светит), что хочу сделать я, я хочу увеличить ее функциональность, оставить возможность полностью включить и полностью выключить лампу.

Подключить как-то параллельно в цепь фоторезистор с реле без использования еще одного переключателе не получится, поэтому я решил поставить вместо двухпозиционного переключателю трехпозиционный тумблер.

Общая электрическая схема должны будет выглядеть так:

Если все сделать правильно, то на третьей позиции переключателя вы сможете, подавая с микроконтроллера ток на реле, включать лампу.

Подключим к ардуино фоторезистор. Схема выглядит так:

3. Код для "умной лампы"

Теперь напишем код, по которому будем передавать ток на реле, если в комнате будет темно.

#define SHINE 5 //ПИН НА ФОТОРЕЗИСТОРЕ #define REL 13 //ПИН НА РЕЛЕ void setup(){ pinMode(SHINE, INPUT); pinMode(REL, OUTPUT); Serial.begin(9600); } void loop(){ if (analogRead(SHINE)<600) // Если света в комнате мало, то включаем лампу { digitalWrite(REL, HIGH) } else // если много, то выключаем { digitalWrite(REL, LOW); } Serial.printIn(analogRead(SHINE)); selay(500); }

Когда будете все подключать, не забудьте убрать фотодатчик от ламы, иначе вас будет ждать световое представление. Все должно заработать.

В следующий раз мы попробуем усложнить код и добавить еще пару функций. До скорой встречи!

В этом эксперименте светодиод должен включаться при падении уровня освещенности ниже порога, заданного потенциометром.

СПИСОК ДЕТАЛЕЙ ДЛЯ ЭКСПЕРИМЕНТА

- 1 плата Arduino Uno;

- 1 беспаечная макетная плата;

- 1 светодиод;

- 1 фоторезистор;

- 1 резистор номиналом 220 Ом, 1 резистор номиналом 10 кОм;

- 1 переменный резистор (потенциометр) ;

- 10 проводов «папа-папа».

ДЕТАЛИ ДЛЯ ДОПОЛНИТЕЛЬНОГО ЗАДАНИЯ

Еще 1 светодиод;

Еще 1 резистор номиналом 220 Ом;

Еще 2 провода.

ПРИНЦИПИАЛЬНАЯ СХЕМА

СХЕМА НА МАКЕТНОЙ ПЛАТЕ

СКЕТЧ

скачать скетч для Arduino IDE
#define LED_PIN 13 #define LDR_PIN A0 #define POT_PIN A1 void setup() { pinMode(LED_PIN, OUTPUT); } void loop() { // считываем уровень освещённости. Кстати, объявлять // переменную и присваивать ей значение можно разом int lightness = analogRead(LDR_PIN); // считываем значение с потенциометра, которым мы регулируем // пороговое значение между условными темнотой и светом int threshold = analogRead(POT_PIN); // объявляем логическую переменную и назначаем ей значение // «темно ли сейчас». Логические переменные, в отличие от // целочисленных, могут содержать лишь одно из двух значений: // истину (англ. true) или ложь (англ. false). Такие значения // ещё называют булевыми (англ. boolean). boolean tooDark = (lightness < threshold); // используем ветвление программы: процессор исполнит один из // двух блоков кода в зависимости от исполнения условия. // Если (англ. «if») слишком темно... if (tooDark) { // ...включаем освещение digitalWrite(LED_PIN, HIGH); } else { // ...иначе свет не нужен — выключаем его digitalWrite(LED_PIN, LOW); } }

ПОЯСНЕНИЯ К КОДУ

  • Мы используем новый тип переменных — boolean , которые хранят только значения true (истина, 1 ) или false (ложь, 0 ). Эти значения являются результатом вычисления логических выражений. В данном примере логическое выражение — это lightness < threshold . На человеческом языке это звучит как: «освещенность ниже порогового уровня». Такое высказывание будет истинным, когда освещенность ниже порогового уровня. Микроконтроллер может сравнить значения переменных lightness и threshold , которые, в свою очередь, являются результатами измерений, и вычислить истинность логического выражения.
  • Мы взяли это логическое выражение в скобки только для наглядности. Всегда лучше писать читабельный код. В других случаях скобки могут влиять на порядок действий, как в обычной арифметике.
  • В нашем эксперименте логическое выражение будет истинным, когда значение lightness меньше значения threshold , потому что мы использовали оператор < . Мы можем использовать операторы > , <= , >= , = = , != , которые значат «больше», «меньше или равно», «больше или равно», «равно», «не равно» соответственно.
  • Будьте особенно внимательны с логическим оператором = = и не путайте его с оператором присваивания = . В первом случае мы сравниваем значения выражений и получаем логическое значение (истина или ложь), а во втором случае присваиваем левому операнду значение правого. Компилятор не знает наших намерений и ошибку не выдаст, а мы можем нечаянно изменить значение какой-нибудь переменной и затем долго разыскивать ошибку.
  • Условный оператор if если ») — один из ключевых в большинстве языков программирования. С его помощью мы можем выполнять не только жестко заданную последовательность действий, но принимать решения, по какой ветви алгоритма идти, в зависимости от неких условий.
  • У логического выражения lightness < threshold есть значение: true или false . Мы вычислили его и поместили в булеву переменную tooDark («слишком темно»). Таким образом мы как бы говорим «если слишком темно, то включить светодиод»
  • С таким же успехом мы могли бы сказать «если освещенность меньше порогового уровня, то включить светодиод», т.е. передать в if всё логическое выражение:
if (lightness < threshold) { // ... }
  • За условным оператором if обязательно следует блок кода, который выполняется в случае истинности логического выражения. Не забывайте про обе фигурные скобки {} !
  • Если в случае истинности выражения нам нужно выполнить только одну инструкцию, ее можно написать сразу после if (…) без фигурных скобок:
if (lightness < threshold) digitalWrite(LED_PIN, HIGH);
  • Оператор if может быть расширен конструкцией else («иначе»). Блок кода или единственная инструкция, следующий за ней, будет выполнен только если логическое выражение в if имеет значение false , «ложь ». Правила, касающиеся фигурных скобок, такие же. В нашем эксперименте мы написали «если слишком темно, включить светодиод, иначе выключить светодиод».

ВОПРОСЫ ДЛЯ ПРОВЕРКИ СЕБЯ

  1. Если мы установим фоторезистор между аналоговым входом и землей, наше устройство будет работать наоборот: светодиод будет включаться при увеличении количества света. Почему?
  2. Какой результат работы устройства мы получим, если свет от светодиода будет падать на фоторезистор?
  3. Если мы все же установили фоторезистор так, как сказано в предыдущем вопросе, как нам нужно изменить программу, чтобы устройство работало верно?
  4. Допустим, у нас есть код if (условие) {действие;} . В каких случаях будет выполнено действие ?
  5. При каких значениях y выражение x + y > 0 будет истинным, если x > 0 ?
  6. Обязательно ли указывать, какие инструкции выполнять, если условие в операторе if ложно?
  7. Чем отличается оператор = = от оператора = ?
  8. Если мы используем конструкцию if (условие) действие1; else действие2; , может ли быть ситуация, когда ни одно из действий не выполнится? Почему?

ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ

  1. Перепишите программу без использования переменной tooDark с сохранением функционала устройства.
  2. Добавьте в схему еще один светодиод. Дополните программу так, чтобы при падении освещенности ниже порогового значения включался один светодиод, а при падении освещенности ниже половины от порогового значения включались оба светодиода.
  3. Измените схему и программу так, чтобы светодиоды включались по прежнему принципу, но светились тем сильнее, чем меньше света падает на фоторезистор.

Для дополнительного задания

    еще 1 светодиод

    еще 1 резистор номиналом 220 Ом

    еще 2 провода

Принципиальная схема

Схема на макетке

Обратите внимание

    В этом эксперименте мы устанавливаем фоторезистор между питанием и аналоговым входом, т.е. в позицию R1 в схеме делителя напряжения . Это нам нужно для того, чтобы при уменьшении освещенности мы получали меньшее напряжение на аналоговом входе.

    Постарайтесь разместить компоненты так, чтобы светодиод не засвечивал фоторезистор.

Скетч

p050_night_light.ino #define LED_PIN 13 #define LDR_PIN A0 #define POT_PIN A1 void setup() { pinMode(LED_PIN, OUTPUT) ; } void loop() { // считываем уровень освещённости. Кстати, объявлять // переменную и присваивать ей значение можно разом int lightness = analogRead(LDR_PIN) ; // считываем значение с потенциометра, которым мы регулируем // пороговое значение между условными темнотой и светом int threshold = analogRead(POT_PIN) ; // объявляем логическую переменную и назначаем ей значение // «темно ли сейчас». Логические переменные, в отличие от // целочисленных, могут содержать лишь одно из двух значений: // истину (англ. true) или ложь (англ. false). Такие значения // ещё называют булевыми (англ. boolean). boolean tooDark = (lightness < threshold) ; // используем ветвление программы: процессор исполнит один из // двух блоков кода в зависимости от исполнения условия. // Если (англ. «if») слишком темно... if (tooDark) { // ...включаем освещение digitalWrite(LED_PIN, HIGH) ; } else { // ...иначе свет не нужен - выключаем его digitalWrite(LED_PIN, LOW) ; } }

Пояснения к коду

    Мы используем новый тип переменных - boolean , которые хранят только значения true (истина, 1) или false (ложь, 0). Эти значения являются результатом вычисления логических выражений. В данном примере логическое выражение - это lightness < threshold . На человеческом языке это звучит как: «освещенность ниже порогового уровня». Такое высказывание будет истинным, когда освещенность ниже порогового уровня. Микроконтроллер может сравнить значения переменных lightness и threshold , которые, в свою очередь, являются результатами измерений, и вычислить истинность логического выражения.

    Мы взяли это логическое выражение в скобки только для наглядности. Всегда лучше писать читабельный код. В других случаях скобки могут влиять на порядок действий, как в обычной арифметике.

    В нашем эксперименте логическое выражение будет истинным, когда значение lightness меньше значения threshold , потому что мы использовали оператор < . Мы можем использовать операторы > , <= , >= , == , != , которые значат «больше», «меньше или равно», «больше или равно», «равно», «не равно» соответственно.

    Будьте особенно внимательны с логическим оператором == и не путайте его с оператором присваивания = . В первом случае мы сравниваем значения выражений и получаем логическое значение (истина или ложь), а во втором случае присваиваем левому операнду значение правого. Компилятор не знает наших намерений и ошибку не выдаст, а мы можем нечаянно изменить значение какой-нибудь переменной и затем долго разыскивать ошибку.

    Условный оператор if («если») - один из ключевых в большинстве языков программирования. С его помощью мы можем выполнять не только жестко заданную последовательность действий, но принимать решения, по какой ветви алгоритма идти, в зависимости от неких условий.

    У логического выражения lightness < threshold есть значение: true или false . Мы вычислили его и поместили в булеву переменную tooDark («слишком темно»). Таким образом мы как бы говорим «если слишком темно, то включить светодиод»

    С таким же успехом мы могли бы сказать «если освещенность меньше порогового уровня, то включить светодиод», т.е. передать в if всё логическое выражение:

if (lightness < threshold) { // ... }

    За условным оператором if обязательно следует блок кода, который выполняется в случае истинности логического выражения. Не забывайте про обе фигурные скобки {} !

    Если в случае истинности выражения нам нужно выполнить только одну инструкцию, ее можно написать сразу после if (…) без фигурных скобок:

if (lightness < threshold) digitalWrite(LED_PIN, HIGH) ;

    Оператор if может быть расширен конструкцией else («иначе»). Блок кода или единственная инструкция, следующий за ней, будет выполнен только если логическое выражение в if имеет значение false , «ложь». Правила, касающиеся фигурных скобок, такие же. В нашем эксперименте мы написали «если слишком темно, включить светодиод, иначе выключить светодиод».

Лучшие статьи по теме