Компьютерная грамотность
  • Главная
  • Ошибки
  • Локальная сеть — что это такое и зачем нужно? Простая офисная локальная сеть с подключением к интернет Схема локальной сети для портативных компьютеров.

Локальная сеть — что это такое и зачем нужно? Простая офисная локальная сеть с подключением к интернет Схема локальной сети для портативных компьютеров.

Введение

Объектом прохождении преддипломной практики является учебное заведение МБОУ СОШ д.Новая Деревня.

Целью преддипломной практики является создание информационной системы (ИС) школы.

Информационная система представляет собой локальную вычислительную сеть для школы. Основное ее назначение – связь компьютеров школы между собой в локальную сеть с последующим доступом в Интернет.

Локальная сеть будет создана для совместного использования периферийного оборудования, информационных ресурсов. Доступ в Интернет необходим для связи школы с другими организациями (например, ГорУО), а также для доступа школьников и учителей к информационным ресурсам сети Интернет. Помимо решения базовых вопросов проектирования ИС, в проектируемом здании будут внедрены системы электронных проходных (СЭП), единая информационная система (ЕИС) и система видеонаблюдения (СВН).

Проектируемая локальная сеть (ЛВС) должна отвечать самым современным требованиям к сетям учебных заведений, обеспечивать надежное централизованное хранение и защиту данных, передавать данные с высокой скоростью и связываться с другими учебными заведениями. Кроме того, дальнейшее расширение сети не должно быть связано с высокими затратами. При дальнейшем приобретении школой ПЭВМ сеть должна позволить простое расширение. Также необходимо максимально использовать имеющееся программное и аппаратное обеспечение.

Цель: получить практические навыки проектирования сетей. Научиться выбирать сетевые технологии и компоненты и уметь обосновывать свой выбор. Спроектировать информационную систему школы.

Спроектировать ЛВС;

Внедрить системы СЭП, ЕИС, СВН;

Организовать выход в Internet;

Обеспечить использования периферийных устройств;

Подобрать необходимое ПО;

Протестировать ИС.

1 Схема локальной вычислительной сети

При проектировании будет применяться топология «звезда». Иерархическая звезда состоит из главного коммутатора, к которому подсоединены рабочие станции. Топология «звезда» имеет ряд преимуществ:

– недорогой кабель и быстрая установка;

– легкое объединение рабочих групп;

– простое расширение сети.

Преимуществом такой топологии является также возможность простого исключения неисправного узла. Звездообразная топология обеспечивает защиту от разрыва кабеля. Если кабель рабочей станции будет поврежден, это не приведет к выходу из строя всего сегмента сети. Она позволяет также легко диагностировать проблемы подключения, так как каждая рабочая станция имеет свой собственный кабельный сегмент, подключенный к коммутатору. Для диагностики достаточно найти разрыв кабеля, который ведет к неработающей станции. Остальная часть сети продолжает нормально работать.

Для школы выбрана клиент-серверная архитектура. При этом я руководствовался следующими причинами:

– количество пользователей превышает десяти;

– требуется централизованное управление ресурсами или резервное копирование;

– необходим специализированный сервер;

– нужен доступ к глобальной сети;

– требуется разделять ресурсы на уровне пользователей;

– обеспечивает централизованное управление учетными записями пользователей, безопасностью и доступом, что упрощает сетевое администрирование.

Архитектура клиент – сервер – это концепция информационной сети, в которой основная часть ее ресурсов сосредоточена в серверах, обслуживающих своих клиентов. Данная архитектура определяет два типа компонентов: серверы и клиенты.

Сервер – это объект, предоставляющий сервис другим объектам сети по их запросам. Сервис – это процесс обслуживания клиентов. Сервер работает по заданиям клиентов и управляет выполнением их заданий. После выполнения каждого задания сервер посылает полученные результаты клиенту, предоставившему это задание.

Процесс, который вызывает сервисную функцию с помощью определенных операций, называется клиентом. Им может быть программа или пользователь.

Клиенты – это рабочие станции, которые используют ресурсы сервера и предоставляют удобные интерфейсы пользователя.

Сети клиент – серверной архитектуры имеют следующие преимущества:

− обеспечивают централизованное управление учетными записями пользователей, безопасностью и доступом, что упрощает сетевое администрирование;

− позволяют организовывать сети с большим количеством рабочих станций;

− обеспечивают эффективный доступ к сетевым ресурсам;

− предоставляют доступ ко всем сетевым ресурсам, на основе учетной записи пользователя.

На рисунке 1 представлена проектируемая схема ИС школы.

Рисунок 1 – Схема ИС

2 Моделирование локальной вычислительной сети

3 Информационная система

3.1 Система электронных проходных (сэп)

Современная школа помимо организации учебного процесса должна обеспечивать безопасность учащихся в школе и оперативно информировать родителей о возникающих проблемах. СЭП специально создана для учебных заведений, не только предотвращает проникновение посторонних, но и с помощью SMS-сообщений уведомляет родителей о времени прихода ребенка в школу и ухода из нее. Контроль прогулов и опозданий учащихся способствует улучшению посещаемости и, как следствие, росту качества знаний. Уверенность родителей в безопасности ребенка в школе и рост показателей качества знаний повышают рейтинг учебного заведения. Для внедрения СЭП, закупался комплект электронных проходных. В комплект входило:

Ip турникет;

Базовое программное обеспечение;

Пульт дистанционного управления;

Бесконтактные карты доступа.

Принцип работы СЭП, представляется в таблице 10.

Таблица 10 – Принцип работы

Продолжение таблицы 10

Ученикам, преподавателям и сотрудникам учебного заведения выдаются электронные пластиковые карточки-пропуска.

Информация об учениках и сотрудниках школы и выданных им карточках заносится в память системы.

Чтобы пройти через турникет, необходимо поднести свою карточку-пропуск к специальному табло на турникете.

Информация с карточки считывается автоматически, и, если карта зарегистрирована в системе, то турникет откроется для прохода.

Продолжение таблицы 10

Практическая работа № 23-24

Тема: Локальная сеть. Топологии локальных сетей.

Цель работы: применить на практике знания о назначение, принципах построения и функционирования локальных компьютерных сетей.

Теоретические сведения

Локальная компьютерная сеть это комплекс программного обеспечения и устройств, объединяющих абонентов, находящихся на незначительной дистанции друг от друга. Как правило, такие системы используются в границах одного предприятия или здания.

Типы локальных сетей

Данные линии принято разделять на 2 вида:

    Сети, для которых характерно централизованное управление, характеризующиеся общей политикой безопасности применимой ко всем пользователей

    Одноранговые сети. В такой системе все пользователи самостоятельно определяют какую информацию и ресурсы они будут представлять в целях общего пользования. А компьютеры являются полностью равноправными и могут быть одновременно, как клиентом, так и сервером.

Основные задачи локальных вычислительных сетей

Главная задача локальной компьютерной сети – это реализация совместного доступа всех пользователей к данным, устройствам и программам. Таким образом, клиентам системы доступно выполнять операции одновременно, а не поочередно.

Помимо этого, локальные линии решают вопросы:

    Обработки и хранения данных;

    Передачи результатов информации пользователям;

    Контроля выполнения проектов.

Главные составляющие локальной сети

Локальная компьютерная сеть не может полноценно функционировать без специального оборудования. Для нее основными составляющими являются:

    Пассивное оборудование: коммутационные панели, монтажные шкафы, информационные розетки, кабели, кабельные каналы;

    Периферийные устройства и компьютеры: принтеры, серверы, рабочие станции, сканеры;

    Активное оборудование: маршрутизаторы, коммутаторы (свитчи), специальные медиаконвекторы.

В зависимости от того, как будет построена сеть, какой протяженностью и согласно каким требованиям, комплекс устройств при монтаже может существенно меняться.

Преимущества пользования локальной сетью

Такой тип системы решает множество вычислительных и информационных задач в пределах одного предприятия. Поэтому для организации компьютерная сеть локального типа является необходимой в силу нескольких ее преимуществ:

    Система обеспечивает хранение всех данных персонального характера на диске файлового сервера. Это дает возможность осуществлять одновременную работу всеми клиентами, обновлять данные в сетевых программных продуктах и при этом пользоваться информацией, защищенной на уровне файлов и каталогов.

    Локальная сеть способствует обмену информацией между всеми компьютерами, находящимися в системе.

    Каждый клиент имеет доступ к глобальной сети при условии наличия специального коммутационного узла.

    Такая вычислительная сеть обеспечивает полноценную печать информации всеми пользователями на общественных принтерах.

    Локальная система позволяет хранить программные продукты (графические редакторы, таблицы, системы управления базами данных) на дисках файлового сервера в единственном экземпляре.

Требования предъявляемые локальным вычислительным сетям

В настоящее время IT-компаниями создано большое количество локально-вычислительных сетей, которые различаются алгоритмами работы, структурой организации, топологиями, размерами. Они эксплуатируются в разных странах мира, но требования, предъявляемые к ним, являются общепринятыми.

    Надежность. Одно из главных свойств, нацеленное сохранить полное и частичное функционирование при поломке нескольких узлов.

    Скорость. Важнейшее свойство, характеризующееся наличием высокоскоростных каналов передачи данных.

    Адаптация. Свойство локально-вычислительной сети, направленное на расширение: рабочие станции устанавливаются в том месте, где это потребуется.

Локальная сеть – важный элемент любого современного предприятия, без которого невозможно добиться максимальной производительности труда. Однако чтобы использовать возможности сетей на полную мощность, необходимо их правильно настроить, учитывая также и то, что расположение подсоединенных компьютеров будет влиять на производительность ЛВС.

Понятие топологии Топология локальных компьютерных сетей – это месторасположение рабочих станций и узлов относительно друг друга и варианты их соединения. Фактически это архитектура ЛВС. Размещение компьютеров определяет технические характеристики сети, и выбор любого вида топологии повлияет на:

    Разновидности и характеристики сетевого оборудования.

    Надежность и возможность масштабирования ЛВС.

    Способ управления локальной сетью.

Таких вариантов расположения рабочих узлов и способов их соединения много, и количество их увеличивается прямо пропорционально повышению числа подсоединенных компьютеров. Основные топологии локальных сетей – это "звезда", "шина" и "кольцо".

Факторы, которые следует учесть при выборе топологии

Д
о того как окончательно определиться с выбором топологии, необходимо учесть несколько особенностей, влияющих на работоспособность сети. Опираясь на них, можно подобрать наиболее подходящую топологию, анализируя достоинства и недостатки каждой из них и соотнеся эти данные с имеющимися для монтажа условиями.

    Работоспособность и исправность каждой из рабочих станций, подсоединенных к ЛВС. Некоторые виды топологии локальной сети целиком зависят от этого.

    Исправность оборудования (маршрутизаторов, адаптеров и т. д.). Поломка сетевого оборудования может как полностью нарушить работу ЛВС, так и остановить обмен информацией с одним компьютером.

    Надежность используемого кабеля. Повреждение его нарушает передачу и прием данных по всей ЛВС или же по одному ее сегменту.

    Ограничение длины кабеля. Этот фактор также важен при выборе топологии. Если кабеля в наличии немного, можно выбрать такой способ расположения, при котором его потребуется меньше.

О топологии «звезда»

Этот вид расположения рабочих станций имеет выделенный центр – сервер, к которому подсоединены все остальные компьютеры. Именно через сервер происходят процессы обмена данными. Поэтому оборудование его должно быть более сложным.

Д
остоинства:

    Топология локальных сетей "звезда" выгодно отличается от других полным отсутствием конфликтов в ЛВС – это достигается за счет централизованного управления.

    Поломка одного из узлов или повреждение кабеля не окажет никакого влияния на сеть в целом.

    Наличие только двух абонентов, основного и периферийного, позволяет упростить сетевое оборудование.

    Скопление точек подключения в небольшом радиусе упрощает процесс контроля сети, а также позволяет повысить ее безопасность путем ограничения доступа посторонних.

Недостатки:

    Такая локальная сеть в случае отказа центрального сервера полностью становится неработоспособной.

    Стоимость "звезды" выше, чем остальных топологий, поскольку кабеля требуется гораздо больше.

Топология «шина»: просто и дешево

В
этом способе соединения все рабочие станции подключены к единственной линии – коаксиальному кабелю, а данные от одного абонента отсылаются остальным в режиме полудуплексного обмена. Топологии локальных сетей подобного вида предполагают наличие на каждом конце шины специального терминатора, без которого сигнал искажается.

Достоинства :

    Все компьютеры равноправны.

    Возможность легкого масштабирования сети даже во время ее работы.

    Выход из строя одного узла не оказывает влияния на остальные.

    Расход кабеля существенно уменьшен.

Недостатки:

    Недостаточная надежность сети из-за проблем с разъемами кабеля.

    Маленькая производительность, обусловленная разделением канала между всеми абонентами.

    Сложность управления и обнаружения неисправностей за счет параллельно включенных адаптеров.

    Длина линии связи ограничена, потому эти виды топологии локальной сети применяют только для небольшого количества компьютеров.

Характеристики топологии «кольцо»

Такой вид связи предполагает соединение рабочего узла с двумя другими, от одного из них принимаются данные, а второму передаются. Главной же особенностью этой топологии является то, что каждый терминал выступает в роли ретранслятора, исключая возможность затухания сигнала в ЛВС. Достоинства:

    Быстрое создание и настройка этой топологии локальных сетей.

    Легкое масштабирование, требующее, однако, прекращения работы сети на время установки нового узла.

    Большое количество возможных абонентов.

    Устойчивость к перегрузкам и отсутствие сетевых конфликтов.

    Возможность увеличения сети до огромных размеров за счет ретрансляции сигнала между компьютерами.

Недостатки:

    Ненадежность сети в целом.

    Отсутствие устойчивости к повреждениям кабеля, поэтому обычно предусматривается наличие параллельной резервной линии.

    Большой расход кабеля.

Типы локальных сетей

Выбор топологии локальных сетей также следует производить, основываясь на имеющемся типе ЛВС. Сеть может быть представлена двумя моделями: одноранговой и иерархической.

Они не очень отличаются функционально, что позволяет при необходимости переходить от одной из них к другой. Однако несколько различий между ними все же есть. Что касается одноранговой модели, ее применение рекомендуется в ситуациях, когда возможность организации большой сети отсутствует, но создание какой-либо системы связи все же необходимо. Рекомендуется создавать ее только для небольшого числа компьютеров. Связь с централизованным управлением обычно применяется на различных предприятиях для контроля рабочих станций.

Одноранговая сеть

Э
тот тип ЛВС подразумевает равноправие каждой рабочей станции, распределяя данные между ними. Доступ к информации, хранящейся на узле, может быть разрешен либо запрещен его пользователем. Как правило, в таких случаях топология локальных компьютерных сетей «шина» будет наиболее подходящей.

Одноранговая сеть подразумевает доступность ресурсов рабочей станции остальным пользователям. Это означает возможность редактирования документа одного компьютера при работе за другим, удаленной распечатки и запуска приложений.

Достоинства однорангового типа ЛВС:

    Легкость реализации, монтажа и обслуживания.

    Небольшие финансовые затраты.

Такая модель исключает надобность в покупке дорогого сервера.

Недостатки:

    Быстродействие сети уменьшается пропорционально увеличению количества подсоединенных рабочих узлов.

    Отсутствует единая система безопасности.

    Доступность информации: при выключении компьютера данные, находящиеся в нем, станут недоступными для остальных.

    Нет единой информационной базы.

Иерархическая модель

Наиболее часто используемые топологии локальных сетей основаны именно на этом типе ЛВС. Его еще называют «клиент-сервер». Суть данной модели состоит в том, что при наличии некоторого количества абонентов имеется один главный элемент – сервер. Этот управляющий компьютер хранит все данные и занимается их обработкой.

Достоинства:

    Отличное быстродействие сети.

    Единая надежная система безопасности.

    Одна, общая для всех, информационная база.

    Облегченное управление всей сетью и ее элементами.

Недостатки:

    Необходимость наличия специальной кадровой единицы – администратора, который занимается мониторингом и обслуживанием сервера.

    Большие финансовые затраты на покупку главного компьютера.

Наиболее часто используемая конфигурация (топология) локальной компьютерной сети в иерархической модели – это «звезда».

Выбор топологии (компоновка сетевого оборудования и рабочих станций) является исключительно важным моментом при организации локальной сети. Выбранный вид связи должен обеспечивать максимально эффективную и безопасную работу ЛВС. Немаловажно также уделить внимание финансовым затратам и возможности дальнейшего расширения сети. Найти рациональное решение – непростая задача, которая выполняется благодаря тщательному анализу и ответственному подходу. Именно в таком случае правильно подобранные топологии локальных сетей обеспечат максимальную работоспособность всей ЛВС в целом.

Задание 1

    Описать одноранговую локальную сеть с топологией линейная шина.

    Заполните таблицу.

Схема локальной сети

Недостатки

Преимущества

оборудование

стоимость

Выводы:

Задание 2

    Описать одноранговую локальную сеть с топологией звезда.

    Проанализируйте описание локальной сети и сделайте выводы.

    Заполните таблицу.

Схема локальной сети

Недостатки

Преимущества

Количество компьютеров в сети

Оборудование, необходимое для создания сети и его стоимость

оборудование

стоимость

Общая стоимость создания локальной сети

Выводы:

Задание 3

    Описать локальную сеть на основе сервера.

    Проанализируйте описание локальной сети и сделайте выводы.

    Заполните таблицу

Схема локальной сети

Недостатки

Преимущества

Количество компьютеров в сети

Оборудование, необходимое для создания сети и его стоимость

оборудование

стоимость

Общая стоимость создания локальной сети

Выводы:

Московский Государственный Горный Университет

Кафедра Автоматизированных Систем Управления

Курсовой проект

по дисциплине «Сети ЭВМ и телекоммуникации»

на тему: «Проектирование локальной вычислительной сети»

Выполнил:

Ст. гр. АС-1-06

Юрьева Я.Г.

Проверил:

проф., д. т. н. Шек В.М.

Москва 2009

Введение

1 Задание на проектирование

2 Описание локально-вычислительной сети

3 Топология сети

4 Схема локальной сети

5 Эталонная модель OSI

6 Обоснование выбора технологии развертывания локальной сети

7 Сетевые протоколы

8 Аппаратное и программное обеспечение

9 Расчет характеристик сети

Список используемой литературы

Локальная вычислительная сеть (ЛВС) представляет собой коммуникационную систему, объединяющую компьютеры и периферийное оборудование на ограниченной территории, обычно не больше нескольких зданий или одного предприятия. В настоящее время ЛВС стала неотъемлемым атрибутом в любых вычислительных системах, имеющих более 1 компьютера.

Основные преимущества, обеспечиваемые локальной сетью – возможность совместной работы и быстрого обмена данными, централизованное хранение данных, разделяемый доступ к общим ресурсам, таким как принтеры, сеть Internet и другие.

Еще одной важнейшей функцией локальной сети является создание отказоустойчивых систем, продолжающих функционирование (пусть и не в полном объеме) при выходе из строя некоторых входящих в них элементов. В ЛВС отказоустойчивость обеспечивается путем избыточности, дублирования; а также гибкости работы отдельных входящих в сеть частей (компьютеров).

Конечной целью создания локальной сети на предприятии или в организации является повышение эффективности работы вычислительной системы в целом.

Построение надежной ЛВС, соответствующей предъявляемым требованиям по производительности и обладающей наименьшей стоимостью, требуется начинать с составления плана. В плане сеть разделяется на сегменты, подбирается подходящая топология и аппаратное обеспечение.

Топологию «шина» часто называют «линейной шиной» (linear bus). Данная топология относится к наиболее простым и широко распространенным топологиям. В ней используется один кабель, именуемый магистралью или сегментом, вдоль которого подключены все компьютеры сети.

В сети с топологией «шина» (рис.1.) компьютеры адресуют данные конкретному компьютеру, передавая их по кабелю в виде электрических сигналов.

Рис.1. Топология «Шина»

Данные в виде электрических сигналов передаются всем компьютерам сети; однако информацию принимает только тот, адрес которого соответствует адресу получателя, зашифрованному в этих сигналах. Причем в каждый момент времени только один компьютер может вести передачу.

Так как данные в сеть передаются лишь одним компьютером, ее производительность зависит от количества компьютеров, подключенных к шине. Чем их больше, т.е. чем больше компьютеров, ожидающих передачи данных, тем медленнее сеть.

Однако вывести прямую зависимость между пропускной способностью сети и количеством компьютеров в ней нельзя. Так как кроме числа компьютеров, на быстродействие сети влияет множество факторов, в том числе:

· характеристики аппаратного обеспечения компьютеров в сети;

· частота, с которой компьютеры передают данные;

· тип работающих сетевых приложений;

· тип сетевого кабеля;

· расстояние между компьютерами в сети.

Шина - пассивная топология. Это значит, что компьютеры только «слушают» передаваемые по сети данные, но не перемещают их от отправителя к получателю. Поэтому, если один из компьютеров выйдет из строя, это не скажется на работе остальных. В активных топологиях компьютеры регенерируют сигналы и передают их по сети.

Отражение сигнала

Данные, или электрические сигналы, распространяются по всей сети - от одного конца кабеля к другому. Если не предпринимать никаких специальных действий, сигнал, достигая конца кабеля, будет отражаться и не позволит другим компьютерам осуществлять передачу. Поэтому, после того как данные достигнут адресата, электрические сигналы необходимо погасить.

Терминатор

Чтобы предотвратить отражение электрических сигналов, на каждом конце кабеля устанавливают терминаторы (terminators), поглощающие эти сигналы. Все концы сетевого кабеля должны быть к чему-нибудь подключены, например к компьютеру или к баррел-коннектору - для увеличения длины кабеля. К любому свободному - неподключенному - концу кабеля должен быть подсоединен терминатор, чтобы предотвратить отражение электрических сигналов.

Нарушение целостности сети

Разрыв сетевого кабеля происходит при его физическом разрыве или отсоединении одного из его концов. Возможна также ситуация, когда на одном или нескольких концах кабеля отсутствуют терминаторы, что приводит к отражению электрических сигналов в кабеле и прекращению функционирования сети. Сеть «падает».

Сами по себе компьютеры в сети остаются полностью работоспособными, но до тех пор, пока сегмент разорван, они не могут взаимодействовать друг с другом.

Концепция топологии сети в виде звезды (рис.2.) пришла из области больших ЭВМ, в которой головная машина получает и обрабатывает все данные с периферийных устройств как активный узел обработки данных. Этот принцип применяется в системах передачи данных. Вся информация между двумя периферийными рабочими местами проходит через центральный узел вычислительной сети.

Рис.2. Топология «Звезда»

Пропускная способность сети определяется вычислительной мощностью узла и гарантируется для каждой рабочей станции. Коллизий (столкновений) данных не возникает. Кабельное соединение довольно простое, так как каждая рабочая станция связана с узлом. Затраты на прокладку кабелей высокие, особенно когда центральный узел географически расположен не в центре топологии.

При расширении вычислительных сетей не могут быть использованы ранее выполненные кабельные связи: к новому рабочему месту необходимо прокладывать отдельный кабель из центра сети.

Топология в виде звезды является наиболее быстродействующей из всех топологий вычислительных сетей, поскольку передача данных между рабочими станциями проходит через центральный узел (при его хорошей производительности) по отдельным линиям, используемым только этими рабочими станциями. Частота запросов передачи информации от одной станции к другой невысокая по сравнению с достигаемой в других топологиях.

Производительность вычислительной сети в первую очередь зависит от мощности центрального файлового сервера. Он может быть узким местом вычислительной сети. В случае выхода из строя центрального узла нарушается работа всей сети. Центральный узел управления – файловый сервер реализует оптимальный механизм защиты против несанкционированного доступа к информации. Вся вычислительная сеть может управляться из ее центра.

Достоинства

· Выход из строя одной рабочей станции не отражается на работе всей сети в целом;

· Хорошая масштабируемость сети;

· Лёгкий поиск неисправностей и обрывов в сети;

· Высокая производительность сети;

· Гибкие возможности администрирования.

Недостатки

· Выход из строя центрального концентратора обернётся неработоспособностью сети в целом;

· Для прокладки сети зачастую требуется больше кабеля, чем для большинства других топологий;

· Конечное число рабочих станций, т.е. число рабочих станций ограничено количеством портов в центральном концентраторе.

При кольцевой топологии (рис.3.) сети рабочие станции связаны одна с другой по кругу, т.е. рабочая станция 1 с рабочей станцией 2, рабочая станция 3 с рабочей станцией 4 и т.д. Последняя рабочая станция связана с первой. Коммуникационная связь замыкается в кольцо.

Рис.3. Топология «Кольцо»

Прокладка кабелей от одной рабочей станции до другой может быть довольно сложной и дорогостоящей, особенно если географическое расположение рабочих станций далеко от формы кольца (например, в линию). Сообщения циркулируют регулярно по кругу. Рабочая станция посылает по определенному конечному адресу информацию, предварительно получив из кольца запрос. Пересылка сообщений является очень эффективной, так как большинство сообщений можно отправлять «в дорогу» по кабельной системе одно за другим. Очень просто можно сделать кольцевой запрос на все станции.

Продолжительность передачи информации увеличивается пропорционально количеству рабочих станций, входящих в вычислительную сеть.

Основная проблема при кольцевой топологии заключается в том, что каждая рабочая станция должна активно участвовать в пересылке информации, и в случае выхода из строя хотя бы одной из них вся сеть парализуется. Неисправности в кабельных соединениях локализуются легко.

Подключение новой рабочей станции требует кратко срочного выключения сети, так как во время установки кольцо должно быть разомкнуто. Ограничения на протяженность вычислительной сети не существует, так как оно, в конечном счете, определяется исключительно расстоянием между двумя рабочими станциями. Специальной формой кольцевой топологии является логическая кольцевая сеть. Физически она монтируется как соединение звездных топологий.

Отдельные звезды включаются с помощью специальных коммутаторов (англ. Hub – концентратор), которые по-русски также иногда называют «хаб».

При создании глобальных (WAN) и региональных (MAN) сетей используется чаще всего Ячеистая топология MESH (рис.4.). Первоначально такая топология была создана для телефонных сетей. Каждый узел в такой сети выполняет функции приема, маршрутизации и передачи данных. Такая топология очень надежна (при выходе из строя любого сегмента существует маршрут, по которому данные могут быть переданы заданному узлу) и обладает высокой устойчивостью к перегрузкам сети (всегда может быть найден маршрут, наименее загруженный передачей данных).


Рис.4. Ячеистая топология.

При разработке сети была выбрана топология «звезда» ввиду простой реализации и высокой надежности (к каждому компьютеру идет отдельный кабель).

1) FastEthernet с использованием 2 коммутаторов.(рис. 5)

2 сегмент
1 сегмент

Рис. 6. Топология FastEthernet с использованием 1 маршрутизатора и 2 коммутаторов.

4Схема локальной сети

Ниже представлена схема расположения компьютеров и протяжки кабелей по этажам (рис.7,8).


Рис. 7. Схема расположения компьютеров и прокладки кабеля на 1 этаже.

Рис. 8. Схема расположения компьютеров и прокладки кабеля на 2 этаже.

Данная схема разработана с учетом характерных особенностей здания. Кабели будут расположены под искусственным напольным покрытием, в специально отведенных для них каналах. Протяжка кабеля на второй этаж будет осуществляться через телекоммуникационный шкаф, который расположен в подсобном помещении, которое используется как серверная комната, где располагаются сервер и маршрутизатор. Коммутаторы расположены в основных помещениях в тумбах.

Уровни взаимодействуют сверху вниз и снизу вверх посредством интерфейсов и могут еще взаимодействовать с таким же уровнем другой системы с помощью протоколов.

Протоколы, использующиеся на каждом уровне модели OSI, представлены в таблице 1.

Таблица 1.

Протоколы уровней модели OSI

Уровень OSI Протоколы
Прикладной HTTP, gopher, Telnet, DNS, SMTP, SNMP, CMIP, FTP, TFTP, SSH, IRC, AIM, NFS, NNTP, NTP, SNTP, XMPP, FTAM, APPC, X.400, X.500, AFP, LDAP, SIP, ITMS, ModbusTCP, BACnetIP, IMAP, POP3, SMB, MFTP, BitTorrent, eD2k, PROFIBUS
Представления HTTP, ASN.1, XML-RPC, TDI, XDR, SNMP, FTP, Telnet, SMTP, NCP, AFP
Сеансовый ASP, ADSP, DLC, Named Pipes, NBT, NetBIOS, NWLink, Printer Access Protocol, Zone Information Protocol, SSL, TLS, SOCKS
Транспортный TCP, UDP, NetBEUI, AEP, ATP, IL, NBP, RTMP, SMB, SPX, SCTP, DCCP, RTP, TFTP
Сетевой IP, IPv6, ICMP, IGMP, IPX, NWLink, NetBEUI, DDP, IPSec, ARP, RARP, DHCP, BootP, SKIP, RIP
Канальный STP, ARCnet, ATM, DTM, SLIP, SMDS, Ethernet, FDDI, Frame Relay, LocalTalk, Token ring, StarLan, L2F, L2TP, PPTP, PPP, PPPoE, PROFIBUS
Физический RS-232, RS-422, RS-423, RS-449, RS-485, ITU-T, xDSL, ISDN, T-carrier (T1, E1), модификациистандарта Ethernet: 10BASE-T, 10BASE2, 10BASE5, 100BASE-T (включает 100BASE-TX, 100BASE-T4, 100BASE-FX), 1000BASE-T, 1000BASE-TX, 1000BASE-SX

Следует понимать, что подавляющее большинство современных сетей в силу исторических причин лишь в общих чертах, приближённо, соответствуют эталонной модели ISO/OSI.

Реальный стек протоколов OSI, разработанный как часть проекта, был воспринят многими как слишком сложный и фактически нереализуемый. Он предполагал упразднение всех существующих протоколов и их замену новыми на всех уровнях стека. Это сильно затруднило реализацию стека и послужило причиной для отказа от него многих поставщиков и пользователей, сделавших значительные инвестиции в другие сетевые технологии. В дополнение, протоколы OSI разрабатывались комитетами, предлагавшими различные и иногда противоречивые характеристики, что привело к объявлению многих параметров и особенностей необязательными. Поскольку слишком многое было необязательно или предоставлено на выбор разработчика, реализации различных поставщиков просто не могли взаимодействовать, отвергая тем самым саму идею проекта OSI.

В результате попытка OSI договориться об общих стандартах сетевого взаимодействия была вытеснена стеком протоколов TCP/IP, используемым в Интернете, и его более простым, прагматичным подходом к компьютерным сетям. Подход Интернета состоял в создании простых протоколов с двумя независимыми реализациями, требующимися для того, чтобы протокол мог считаться стандартом. Это подтверждало практическую реализуемость стандарта. Например, определения стандартов электронной почты X.400 состоят из нескольких больших томов, а определение электронной почты Интернета (SMTP) - всего несколько десятков страниц в RFC 821. Всё же стоит заметить, что существуют многочисленные RFC, определяющие расширения SMTP. Поэтому на данный момент полная документация по SMTP и расширениям также занимает несколько больших книг.

Большинство протоколов и спецификаций стека OSI уже не используются, такие как электронная почта X.400. Лишь немногие выжили, часто в значительно упрощённом виде. Структура каталогов X.500 до сих пор используется, в основном, благодаря упрощению первоначального громоздкого протокола DAP, получившему название LDAP и статус стандарта Интернета.

Свёртывание проекта OSI в 1996 году нанесло серьёзный удар по репутации и легитимности участвовавших в нём организаций, особенно ISO. Наиболее крупным упущением создателей OSI был отказ увидеть и признать превосходство стека протоколов TCP/IP.

Для выбора технологии рассмотрим таблицу сравнений технологий FDDI, Ethernet и TokenRing (таблица 2).

Таблица 2. Характеристики технологий FDDI, Ethernet, TokenRing

Характеристика FDDI Ethernet Token Ring
Битовая скорость, Мбит/с 100 10 16
Топология Двойное кольцо деревьев Шина/звезда Звезда/кольцо
Среда передачиданных Оптоволокно, неэкранированная витая пара категории 5

Толстый коаксиал, тонкий коаксиал,

Экранированная или неэкранированная витая пара, оптоволокно
Максимальная длина сети (без мостов)

(100 км на кольцо)

2500 м 40000 м
Максимальноерасстояние между узлами 2 км (не более 11 дБ потерь между узлами) 2500 м 100 м
Максимальноеколичество узлов

(1000 соединений)

1024

260 для экранированной витой пары,

72 для неэкранированной витой пары

После анализа таблицы характеристик технологий FDDI, Ethernet, TokenRing, очевиден выбор технологии Ethernet (вернее ее модификации FastEthernet), которая учитывает все требованиям нашей локальной сети. Т.к технология TokenRing обеспечивает скорость передачи данных до 16 мбит\сек, то мы ее исключаем из дальнейшего рассмотрения, а из-за сложность реализации технологии FDDI, наиболее разумно будет использовать Ethernet.

7Сетевые протоколы

Семиуровневая модель OSI является теоретической, и содержит ряд недоработок. Реальные сетевые протоколы вынуждены отклоняться от неё, обеспечивая непредусмотренные возможности, поэтому привязка некоторых из них к уровням OSI является несколько условной.

Основная недоработка OSI - непродуманный транспортный уровень. На нём OSI позволяет обмен данными между приложениями (вводя понятие порта - идентификатора приложения), однако, возможность обмена простыми дейтаграммами в OSI не предусмотрена - транспортный уровень должен образовывать соединения, обеспечивать доставку, управлять потоком и т. п. Реальные же протоколы реализуют такую возможность.

Сетевые транспортные протоколы обеспечивают базовые функции, необходимые компьютерам для коммуникаций с сетью. Такие протоколы реализуют полные эффективные каналы коммуникаций между компьютерами.

Транспортный протокол можно рассматривать как зарегистрированную почтовую службу. Транспортный протокол гарантирует, что передаваемые данные доходят до заданного адресата, проверяя получаемую от него квитанцию. Он выполняет контроль и исправление ошибок без вмешательства более высокого уровня.

Основными сетевыми протоколами являются:

NWLink IPX/SPX/NetBIOS-совместимый транспортный протокол (NWLink) - это NDIS-совместимая 32-разрядная реализация протокола IPX/SPX фирмы Novell. Протокол NWLink поддерживает два интерфейса прикладного программирования (API): NetBIOS и Windows Sockets. Эти интерфейсы позволяют обеспечить связь компьютеров под управлением Windows между собой, а также с серверами NetWare.

Транспортный драйвер NWLink представляет собой реализацию протоколов низкого уровня NetWare, таких как IPX, SPX, RIPX (Routing Information Protocol over IPX) и NBIPX (NetBIOS over IPX). Протокол IPX управляет адресацией и маршрутизацией пакетов данных внутри сетей и между ними. Протокол SPX обеспечивает надежную доставку данных, поддерживая правильность последовательности их передачи и механизм подтверждений. Протокол NWLink обеспечивает совместимость с NetBIOS за счет уровня NetBIOS поверх протокола IPX.

IPX/SPX (от англ. Internetwork Packet eXchange/Sequenced Packet eXchange) - стек протоколов, используемый в сетях Novell NetWare. Протокол IPX обеспечивает сетевой уровень (доставку пакетов, аналог IP), SPX - транспортный и сеансовый уровень (аналог TCP).

Протокол IPX предназначен для передачи дейтограмм в системах, неориентированных на соединение (также как и IP или NETBIOS, разработанный IBM и эмулируемый в Novell), он обеспечивает связь между NetWare серверами и конечными станциями.

SPX (Sequence Packet eXchange) и его усовершенствованная модификация SPX II представляют собой транспортные протоколы 7-уровневой модели ISO. Это протокол гарантирует доставку пакета и использует технику скользящего окна (отдаленный аналог протокола TCP). В случае потери или ошибки пакет пересылается повторно, число повторений задается программно.

NetBEUI - это пpотокол, дополняющий спецификацию интеpфейса NetBIOS, используемую сетевой опеpационной системой. NetBEUI фоpмализует кадp тpанспоpтного уpовня, не стандаpтизованный в NetBIOS. Он не соответствует какому-то конкpетному уpовню модели OSI, а охватывает тpанспоpтный уpовень, сетевой уpовень и подуpовень LLC канального уpовня. NetBEUI взаимодействует напpямую с NDIS уpовня MAC. Таким обpазом это не маpшpутизиpуемый пpотокол.

Транспортной частью NetBEUI является NBF (NetBIOS Frame protocol). Сейчас вместо NetBEUI обычно применяется NBT (NetBIOS over TCP/IP).

Как правило NetBEUI используется в сетях где нет возможности использовать NetBIOS, например, в компьютерах с установленной MS-DOS.

Повторитель (англ. repeater) - предназначен для увеличения расстояния сетевого соединения путем повторения электрического сигнала "один в один". Бывают однопортовые повторители и многопортовые. В сетях на витой паре повторитель является самым дешевым средством объединения конечных узлов и других коммуникационных устройств в единый разделяемый сегмент. Повторители Ethernet могут иметь скорость 10 или 100 Мбит/с (FastEthernet), единую для всех портов. Для GigabitEthernet повторители не используются.

Мост (от англ. bridge - мост) является средством передачи кадров между двумя (и более) логически разнородными сегментами. По логике работы является частным случаем коммутатора. Скорость обычно 10 Мбит/с (для FastEthernet чаще используются коммутаторы).

Концентратор или хаб (от англ. hub - центр деятельности) - сетевое устройство, для объединения нескольких устройств Ethernet в общий сегмент. Устройства подключаются при помощи витой пары, коаксиального кабеля или оптоволокна. Хаб является частным случаем концентратора

Концентратор работает на физическом уровне сетевой модели OSI, повторяет приходящий на один порт сигнал на все активные порты. В случае поступления сигнала на два и более порта одновременно возникает коллизия, и передаваемые кадры данных теряются. Таким образом, все подключенные к концентратору устройства находятся в одном домене коллизий. Концентраторы всегда работают в режиме полудуплекса, все подключенные устройства Ethernet разделяют между собой предоставляемую полосу доступа.

Многие модели хабов имеют простейшую защиту от излишнего количества коллизий, возникающих по причине одного из подключенных устройств. В этом случае они могут изолировать порт от общей среды передачи. По этой причине, сетевые сегменты, основанные на витой паре гораздо стабильнее в работе сегментов на коаксиальном кабеле, поскольку в первом случае каждое устройство может быть изолировано хабом от общей среды, а во втором случае несколько устройств подключаются при помощи одного сегмента кабеля, и, в случае большого количества коллизий, концентратор может изолировать лишь весь сегмент.

В последнее время концентраторы используются достаточно редко, вместо них получили распространение коммутаторы - устройства, работающие на канальном уровне модели OSI и повышающие производительность сети путём логического выделения каждого подключенного устройства в отдельный сегмент, домен коллизий.

Коммутатор или switch (от англ. - переключатель) Коммутатор (switch, switching hub) по принципу обработки кадров ничем не отличается от моста. Основное его отличие от моста состоит в том, что он является своего рода коммуникационным мультипроцессором, так как каждый его порт оснащен специализированным процессором, который обрабатывает кадры по алгоритму моста независимо от процессоров других портов. За счет этого общая производительность коммутатора обычно намного выше производительности традиционного моста, имеющего один процессорный блок. Можно сказать, что коммутаторы - это мосты нового поколения, которые обрабатывают кадры в параллельном режиме.

Это устройство, предназначенное для соединения нескольких узлов компьютерной сети в пределах одного сегмента. В отличие от концентратора, который распространяет трафик от одного подключенного устройства ко всем остальным, коммутатор передает данные только непосредственно получателю. Это повышает производительность и безопасность сети, избавляя остальные сегменты сети от необходимости (и возможности) обрабатывать данные, которые им не предназначались.

Коммутатор работает на канальном уровне модели OSI, и потому в общем случае может только объединять узлы одной сети по их MAC-адресам. Для соединения нескольких сетей на основе сетевого уровня служат маршрутизаторы.

Коммутатор хранит в памяти специальную таблицу (ARP-таблицу), в которой указывается соответствие MAC-адреса узла порту коммутатора. При включении коммутатора эта таблица пуста, и он работает в режиме обучения. В этом режиме поступающие на какой-либо порт данные передаются на все остальные порты коммутатора. При этом коммутатор анализирует пакеты данных, определяя MAC-адрес компьютера-отправителя, и заносит его в таблицу. Впоследствии, если на один из портов коммутатора поступит пакет, предназначенный для этого компьютера, этот пакет будет отправлен только на соответствующий порт. Со временем коммутатор строит полную таблицу для всех своих портов, и в результате трафик локализуется.

Коммутаторы подразделяются на управляемые и неуправляемые (наиболее простые). Более сложные коммутаторы позволяют управлять коммутацией на канальном и сетевом уровне модели OSI. Обычно их именуют соответственно, например Level 2 Switch или просто, сокращенно L2. Управление коммутатором может осуществляться посредством протокола Web-интерфейса, SNMP, RMON (протокол, разработанный Cisco) и т.п. Многие управляемые коммутаторы позволяют выполнять дополнительные функции: VLAN, QoS, агрегирование, зеркалирование. Сложные коммутаторы можно объединять в одно логическое устройство - стек, с целью увеличения числа портов (например, можно объединить 4 коммутатора с 24 портами и получить логический коммутатор с 96 портами).

Преобразователь интерфейсов или конвертер (англ. mediaconverter) позволяет осуществлять переходы от одной среды передачи к другой (например, от витой пары к оптоволокну) без логического преобразования сигналов. Благодаря усилению сигналов эти устройства могут позволять преодолевать ограничения на длину линий связи (если ограничения не связаны с задержкой распространения). Используются для связи оборудования с разнотипными портами.

Выпускается три типа конвертеров:

× Преобразователь RS-232 <–> RS-485;

× Преобразователь USB <–> RS-485;

× Преобразователь Ethernet <–> RS-485.

Преобразователь RS-232 <–> RS-485 преобразует физические параметры интерфейса RS-232 в сигналы интерфейса RS-485. Может работать в трех режимах приема-передачи. (В зависимости от установленного в конвертере программного обеспечения и состояния переключателей на плате конвертера).

Преобразователь USB <–> RS-485 - этот конвертер предназначен для организации интерфейса RS-485 на любом компьютере, имеющем интерфейс USB. Конвертер выполнен в виде отдельной платы, подключаемой к разъёму USB. Питание конвертера осуществляется непосредственно от порта USB. Драйвер конвертера позволяет создать для интерфейса USB виртуальный СОМ-порт и работать с ним как с обычным портом RS-485 (по аналогии с RS-232). Устройство обнаруживается сразу при подключении к порту USB.

Преобразователь Ethernet <–> RS-485 - этот конвертер предназначен для обеспечения возможности передачи сигналов интерфейса RS-485 по локальной сети. Конвертер имеет свой IP-адрес (устанавливаемый пользователем) и позволяет осуществить доступ к интерфейсу RS-485 с любого компьютера подключенного к локальной сети и установленным соответствующим программным обеспечением. Для работы с конвертером поставляются 2 программы: Port Redirector – поддержка интерфейса RS-485 (СОМ-порта) на уровне сетевой карты и конфигуратор Lantronix, позволяющий установить привязку конвертера к локальной сети пользователя, а также задать параметры интерфейса RS-485 (скорость передачи, количество бит данных и т.д.) Конвертер обеспечивает полностью прозрачную приемо-передачу данных в любом направлении.

Маршрутиза́тор или ро́утер (от англ. router) - сетевое устройство, используемое в компьютерных сетях передачи данных, которое, на основании информации о топологии сети (таблицы маршрутизации) и определённых правил, принимает решения о пересылке пакетов сетевого уровня модели OSI их получателю. Обычно применяется для связи нескольких сегментов сети.

Традиционно, маршрутизатор использует таблицу маршрутизации и адрес получателя, который находится в пакетах данных, для дальнейшей передачи данных. Выделяя эту информацию, он определяет по таблице маршрутизации путь, по которому следует передать данные и направляет пакет по этому маршруту. Если в таблице маршрутизации для адреса нет описанного маршрута, пакет отбрасывается.

Существуют другие способы определения маршрута пересылки пакетов, когда, например, используется адрес отправителя, используемые протоколы верхних уровней и другая информация, содержащаяся в заголовках пакетов сетевого уровня. Нередко маршрутизаторы могут осуществлять трансляцию адресов отправителя и получателя (англ. NAT, Network Address Translation), фильтрацию транзитного потока данных на основе определённых правил с целью ограничения доступа, шифрование/дешифрование передаваемых данных и т. д.

Маршрутизаторы помогают уменьшить загрузку сети, благодаря её разделению на домены коллизий и широковещательные домены, а также фильтрации пакетов. В основном их применяют для объединения сетей разных типов, зачастую несовместимых по архитектуре и протоколам, например для объединения локальных сетей Ethernet и WAN-соединений, использующих протоколы DSL, PPP, ATM, Frame relay и т. д. Нередко маршрутизатор используется для обеспечения доступа из локальной сети в глобальную сеть Интернет, осуществляя функции трансляции адресов и межсетевого экрана.

В качестве маршрутизатора может выступать как специализированное устройство, так и PC компьютер, выполняющий функции простейшего роутера.

Моде́м (аббревиатура, составленная из слов мо дулятор-дем одулятор) - устройство, применяющееся в системах связи и выполняющее функцию модуляции и демодуляции. Частным случаем модема является широко применяемое периферийное устройство для компьютера, позволяющее ему связываться с другим компьютером, оборудованным модемом, через телефонную сеть (телефонный модем) или кабельную сеть (кабельный модем).

Конечное сетевое оборудование является источником и получателем информации, передаваемой по сети.

Компьютер (рабочая станция) , подключенный к сети, является самым универсальным узлом. Прикладное использование компьютера в сети определяется программным обеспечением и установленным дополнительным оборудованием. Для дальних коммуникаций используется модем, внутренний или внешний. С точки зрения сети, «лицом» компьютера является его сетевой адаптер. Тип сетевого адаптера должен соответствовать назначению компьютера и его сетевой активности.

Сервер является также компьютером, но с большими ресурсами. Это подразумевает его более высокую сетевую активность и значимость. Серверы желательно подключать к выделенному порту коммутатора. При установке двух и более сетевых интерфейсов (в том числе и модемного подключения) и соответствующего программного обеспечения сервер может играть роль маршрутизатора или моста. Серверы, как правило, должны иметь высокопроизводительную операционную систему.

В таблице 5 приведены параметры типовой рабочей станции и ее стоимость для разрабатываемой локальной сети.

Таблица 5.

Рабочая станция

Системный блок.GH301EA HP dc5750 uMT A64 X2-4200+(2.2GHz),1GB,160GB,ATI Radeon X300,DVD+/-RW,Vista Business
Компьютер Hewlett-Packard GH301EA серии dс 5750. Данный системный блок оборудован процессором AMD Athlon™ 64 X2 4200+ c частотой 2.2 ГГц, 1024 Mб оперативной памяти DDR2, жестким диском на 160 Гб, DVD-RW приводом и установленной ОС Windows Vista Business.
Цена:16 450.00 руб.
Монитор. TFT 19 “Asus V W1935
Цена:6 000,00 руб.
Устройства ввода
Мышь Genius GM-03003 172 руб.
Клавиатура 208 руб.
Общая стоимость 22 830 руб.

В Таблице 6 приведены параметры сервера.


Таблица 6.

Сервер

DESTEN Системныйблок DESTEN eStudio 1024QM
Процессор INTEL Core 2 Quad Q6600 2.4GHz 1066MHz 8Mb LGA775 OEM Материнскаяплата Gigabyte GA-P35-DS3R ATX Модульпамяти DDR-RAM2 1Gb 667Mhz Kingston KVR667D2N5/1G - 2 Жесткийдиск 250 Gb Hitachi Deskstar T7K500 HDP725025GLA380 7200RPM 8Mb SATA-2 - 2 Видеоадаптер 512MB Zotac PCI-E 8600GT DDR2 128 bit DVI (ZT-86TEG2P-FSR) Привод DVD RW NEC AD-7200S-0B SATA ЧерныйКорпус ZALMAN HD160XT BLACK.
Цена:50 882.00 руб.

Монитор. TFT 19 “Asus V W1935

Тип: ЖК Технология ЖК: TN Диагональ: 19" Формат экрана: 5:4 Макс. разрешение: 1280 x 1024 Входы: VGA Вертикальная развертка: 75 Гц Горизонтальная развертка: 81 КГц
Цена: 6 000,00 руб.
Устройства ввода
Мышь Genius GM-03003 172 руб.
Клавиатура Logitech Value Sea Grey (refresh) PS/2 208 руб.
Общая стоимость 57 262 руб.

В программное обеспечение сервера входят:

× Операционная система WindowsServer 2003 SP2+R2

× Пакетпрограмм ABBY FineReader Corporate Edition v8.0 (серверная лицензия)

× Программа для администрирования сети SymantecpcAnywhere 12 (сервер)

В программное обеспечение рабочей станции входят:

× Операционная система WindowsXPSP2

× Антивирусная программа NOD 32 AntiVirusSystem.

× Пакетпрограмм Microsoft Office 2003 (pro)

× Пакет программ ABBY FineReader Corporate Edition v8.0 (клиентская лицензия)

× Программа для администрирования сети Symantec pcAnywhere 12 (клиент)

× Пользовательские программы

Для реальных сетей важен такой показатель производительности, как показатель использования сети (networkutilization), который представляет собой долю в процентах от суммарной пропускной способности (не поделенной между отдельными абонентами). Он учитывает коллизии и другие факторы. Ни сервер, ни рабочие станции не содержат средств для определения показателя использования сети, для этого предназначены специальные, не всегда доступные из-за высокой стоимости аппаратно-программные средства типа анализаторов протоколов.

Считается, что для загруженных систем Ethernet и FastEthernet хорошим значением показателя использования сети является 30%. Это значение соответствует отсутствию длительных простоев в работе сети и обеспечивает достаточный запас в случае пикового повышения нагрузки. Однако если показатель использования сети значительное время составляет 80...90% и более, то это свидетельствует о практически полностью используемых (в данное время) ресурсах, но не оставляет резерва на будущее.

Для проведения расчетов и выводов следует рассчитать производительность в каждом сегменте сети.

Вычислим полезную нагрузку Pп:


где n – количество сегментов проектируемой сети.

P0 = 2*16 = 32Мбит/сек

Полная фактическая нагрузка Pф рассчитывается с учетом коллизий и величины задержек доступа к среде передачи данных:

, Мбит/с, (3)

где к – задержка доступа к среде передачи данных: для семейства технологий Ethernet – 0,4, для TokenRing – 0,6, для FDDI – 0,7.

Рф = 32*(1+0.4) = 44,8 Мбит/с

Т. к. фактическая нагрузка Pф > 10 Мбит/с, то, как и предполагалось ранее, данную сеть невозможно реализовать с помощью стандарта Ethernet, необходимо применить технологию FastEthernet (100 Мбит/с).

Т.к. данной в сети мы не используем концентраторы, то рассчитывать время двойного оборота сигнала не требуется.(Сигнал коллизий отсутствует)

В таблице 7 приведен итоговый расчет стоимости сети, построенной на 2 коммутаторах. (Вариант 1 ).

Таблица 6.

В Таблице 8 приведен итоговый расчет стоимости сети, построенной на 2 коммутаторах и 1 маршрутизаторе. (Вариант 2 ).

Таблица 8.

Наименование Цена за 1 ед. (руб.) Всего (руб.)
1 Вилки RJ-45 86 2 172
2 Кабель RJ-45 UTP, lev.5e 980м. 20 19 600
3 Коммутатор TrendNet N-Way Switch TEG S224 (10/100Mbps, 24 port, +2 1000Mbps Rack Mount) 2 3714 7 428
4 Маршрутизатор , Router D-Link DIR-100 1 1 250 1 250
5 Рабочая станция 40 22 830 913 200
6 Сервер Sunrise XD (Tower/RackMount) 1 57 262 57 262
Итого: 998912

В итоге получаем два варианта сети, которые не значительно отличаются по стоимости и отвечают стандартам построения сети. Первый вариант сети уступает второму варианту, в показателе надежности, даже несмотря на то, что проектирование сети по второму варианту незначительно дороже. Следовательно, наилучший вариант построения локальной сети будет вариант два – локальная сеть, построенная на 2 коммутаторах и маршрутизаторе.

Для надёжной работы и повышения производительности сети следует вносить изменения в структуру сети только с учётом требований стандарта.

Для защиты данных от вирусов необходимо установить антивирусные программы (например, NOD32 AntiVirusSystem), а для восстановления повреждённых или ошибочно удалённых данных следует использовать специальные утилиты (например, утилиты, входящие в состав пакета NortonSystemWorks).

Хотя сеть построена с запасом производительности, всё равно следует беречь сетевой трафик, поэтому с помощью программы для администрирования следить за целевым использованием внутрисетевого и интернет-трафика. Благотворно на производительности сети скажется использование служебных приложений NortonSystemWorks(таких как дефрагментация, чистка реестра, исправление текущих ошибок с помощью WinDoctor), а так же регулярной антивирусной проверки в ночное время. Также следует разделить во времени загрузку информации из другого сегмента т.е. постараться чтобы каждый сегмент обращался к другому в отведённое ему время. Установка программ, не имеющих отношения к непосредственной области деятельности компании, должна пресекаться администратором. При монтаже сети необходимо маркировать кабель, чтобы не столкнуться с трудностями при обслуживании сети.

Монтаж сети следует осуществлять через существующие каналы и короба.

Для надежной работы сети необходимо наличие сотрудника отвечающего за всю локальную сеть и занимающегося ее оптимизацией и повышением производительности.

Периферийное (принтеры, сканеры, проекторы) оборудование следует устанавливать уже после конкретного распределения обязанностей рабочих станций.

В целях профилактики следует периодически проверять целостность кабелей в секретном полу. При демонтаже оборудования следует аккуратно обращаться с оборудованием, для возможности его последующего использования.

Кроме того, необходимо ограничить доступ в серверную комнату и к тумбам с коммутаторами.

1. В.Г. Олифер, Н.А. Олифер – СПб. Питер 2004

2. http://ru.wikipedia.org/wiki/

3. В.М. Шек, Т.А. Кувашкина «Методические указания для курсового проектирования по дисциплине Сети ЭВМ и телекоммуникаций» - Москва, 2006

4. http://catalog.sunrise.ru/

5. В.М. Шек. Лекции по дисциплине «Сети ЭВМ и телекоммуникации», 2008г.

Лучшие статьи по теме