Компьютерная грамотность

Фазированная антенная решетка принцип работы. Фазированная антенная решётка (ФАР)

Активная фазированная антенная решётка (АФАР ) - фазированная антенная решётка, в которой направление излучения и (или) форма диаграммы направленности регулируются изменением амплитудно-фазового распределения токов или полей возбуждения на активных излучающих элементах .

Активная фазированная антенная решётка конструктивно состоит из модулей, которые объединяют излучающий элемент (или группу излучающих элементов) и активные устройства (усилительные, генераторные или преобразовательные). Эти устройства могут в простейшем случае усиливать передаваемый или принимаемый излучающим элементом сигнал, а также осуществлять преобразование частоты сигнала, генерировать (формировать) сигнал, преобразовывать сигнал из аналоговой в цифровую форму и (или) из цифровой в аналоговую. Для совместной согласованной работы все модули АФАР должны быть объединены цепью распределения сигнала возбудителя (в режиме приёма - цепью сбора сигнала в приёмное устройство), или работа модулей должна быть синхронизирована от единого источника.

В отличие от АФАР, пассивная ФАР не содержит активных устройств. Например, в передающей системе, оснащенной пассивной ФАР, радиосигнал генерируется и усиливается до требуемой мощности в едином для всей системы радиопередатчике, после чего распределяется (а мощность радиосигнала делится) между излучающими элементами. Напротив, в передающей АФАР нет единого выходного мощного усилителя: менее мощные усилители размещены в каждом её модуле.

Сравнение с пассивной решёткой[править | править вики-текст]

В обычной пассивной решётке один передатчик мощностью несколько киловатт питает несколько сотен элементов, каждый из которых излучает только десятки ватт мощности. Современный микроволновый транзисторный усилитель может, однако, также произвести десятки ватт, и в радаре с активной фазированной решёткой несколько сотен модулей, каждый мощностью в десятки ватт, создают в целом мощный главный луч радара в несколько киловатт.



В то время как результат идентичен, активные решётки намного более надёжны, поскольку хотя отказ одного приёмо-передающего элемента решётки и искажает диаграмму направленности антенны, что несколько ухудшает характеристики локатора, в целом он остаётся работоспособным. Катастрофического отказа лампы передатчика, которая является проблемой обычных радаров, просто не может произойти. Дополнительная выгода - экономия веса без большой лампы высокой мощности, связанной с ней системой охлаждения и большого блока питания высокого напряжения.

Другой особенностью, которая может использоваться только в активных решётках, является способность управлять усилением индивидуальных приёмно-передающих модулей. Если это может быть сделано, диапазон углов, через которые луч может быть отклонен, существенно увеличивается, и таким образом многие из ограничений геометрии решёток, которые имеют обычные фазированные решётки могут быть обойдены. Такие решётки называют решётками суперувеличения. Из изданной литературы неясно, используют ли какая-либо существующая или проектируемая антенная решётка эту технику.

Недостатки[править | править вики-текст]

Технология АФАР имеет две ключевые проблемы:

Рассеивание мощности[править | править вики-текст]

Первая проблема - рассеивание мощности. Из-за недостатков микроволновых транзисторных усилителей (монолитная микроволновая интегральная схема, MMIC (англ.)русск.), эффективность передатчика модуля - типично меньше чем 45%. В результате, AФAР выделяет большое количество теплоты, которая должна быть рассеяна, чтобы предохранить чипы передатчика от расплавления - надёжность GaAs MMIC-чипов улучшается при низкой рабочей температуре. Традиционное охлаждение воздухом, используемое в обычных ЭВМ и авионике, плохо подходит при высокой плотности упаковки элементов AФAР, в результате чего современные AФAР охлаждаются жидкостью (американские проекты используют polyalphaolefin (PAO) хладагент, подобный синтетической гидравлической жидкости). Типичная жидкостная система охлаждения использует насосы, вводящие хладагент через каналы в антенне, и выводящие затем его к теплообменнику - им может быть как воздушный охладитель (радиатор) так и теплообменник в топливном баке - со второй жидкостью, охлаждающей петлю теплообмена, чтобы уменьшить нагрев содержимого топливного бака.

По сравнению с обычным радаром истребителя с воздушным охлаждением, радар с AФAР более надёжен, однако потребляет больше электроэнергии и требует более интенсивного охлаждения. Но AФAР может обеспечить намного большую передаваемую мощность, что необходимо для большей дальности обнаружения цели (увеличение передающей мощности однако имеет недостаток - увеличения следа, по которому радиоразведка противника или RWR могут обнаружить радар).

Стоимость

Другая проблема - стоимость массового производства модулей. Для радара истребителя, требующего типично от 1000 до 1800 модулей, стоимость AФAР становится неприемлемой, если модули стоят больше чем сто долларов каждый. Ранние модули стоили приблизительно 2 тыс. долл., что не допускало массового использования AФAР. Однако стоимость таких модулей и MMIC-чипов постоянно уменьшается, поскольку себестоимость их разработки и производства постоянно снижается.

Несмотря на недостатки, активные фазированные решётки превосходят обычные радарные антенны почти во всех отношениях, обеспечивая более высокую следящую способность и надёжность, пусть и при некотором увеличении в сложности и, возможно, стоимости.

Электронное управление лучом превращает антенну в активное средство обработки сигналов. Наиболее распространенная форма такой антенны - фазированная антенная решетка (ФАР). Рассматриваются различные способы управления электромагнитными волнами в ФАР, в частности управление с помощью полупроводниковых диодов.

Представим себе высоконаправленную антенну, обеспечивающую связь с искусственным спутником Земли (ИСЗ). Такая антенна имеет остросфокусированный луч, точно направленный на объект связи. Примером такой антенны может служить наземная антенна станции "Орбита", которая использовалась в первых советских системах передачи телевидения и обеспечения многоканальной телефонной связи через ИСЗ. Такая антенна представляет собой параболический рефлектор диаметром порядка десяти метров. Для того чтобы осуществить слежение за объектом связи или радионаблюдения с помощью такой антенны, необходимо поворачивать всю эту довольно тяжелую механическую систему.

Очевидно, что во многих случаях нужна антенна, у которой направление луча не было бы связано с ориентацией всей антенны как механической конструкции. Нужна антенна с немеханическим движением луча или, другими словами, антенна с электронным сканированием. Под сканированием здесь понимается движение луча антенны, осуществляющее обзор пространства в заданном пространственном угле. Такая антенна нужна не только в системах связи с ИСЗ, но и в системе управления движением в районе большого аэропорта. Особую роль антенны с электронным сканированием играли и продолжают играть в системах противоракетной обороны (ПРО). С начала 90-х годов антенны с электронным сканированием стали объектом внимания автомобильных компаний. В этой связи такие антенны могут стать предметом массового спроса, как цветной телевизор или персональный компьютер . Сложившееся к настоящему времени техническое решение антенны с электронным сканированием представлено в виде решетки, в узлах которой расположены простейшие излучатели электромагнитной волны. Цепи питания этих излучателей организованы так, что излучение, испускаемое каждым излучателем, когерентно с излучением всех излучателей, в то время как фаза излучаемых волн изменяется по заданному закону. Изменение распределения фаз на излучателях позволяет сформировать луч антенны в заданном направлении. Такая решетка излучателей с управляемым распределением фаз волн, излучаемых элементарными излучателями, получила название фазированной антенной решетки (ФАР). Таким образом, термины антенна с немеханическим движением луча, антенна с электронным сканированием или фазированная антенная решетка практически являются синонимами.

Идея, что лучом системы когерентных излучателей можно управлять, изменяя распределение фаз на излучателях, была высказана уже давно. Одна из первых антенн с немеханическим управлением диаграммой направленности была построена для трансатлантической радиотелефонной линии связи в 1937 году. Эта антенна, обладая довольно высокой направленностью, позволяла изменять направление приема лучей в вертикальной плоскости и таким путем выбирать направление прихода лучей, наименее ослабленных при отражении от ионосферы. Так как благодаря направленным свойствам антенны осуществлялся прием только одного отраженного луча, то резко уменьшались замирания сигнала. Эта антенна представляла собой систему ромбических антенн, расположенных вдоль прямой на участке длиной около 1,5 км. Управление диаграммой направленности осуществлялось изменением фазовых соотношений между токами в отдельных ромбах. Высокой скорости управления лучом системы ромбических антенн не требовалось. Развитие радиолокации поставило задачу управления диаграммой направленности антенны в течение интервалов времени, измеряемых вначале миллисекундами, а затем микросекундами и даже долями микросекунды.

Насколько можно судить по известным публикациям, первая антенна с электронным сканированием для применения в радиолокации была осуществлена в Ленинградском электротехническом институте (ЛЭТИ) в 1955 году в группе под руководством проф. Ю.Я. Юрова (1914-1955). В основу принципа действия антенны было положено управление фазами волн в нескольких излучателях антенны с помощью фазовращателей, содержащих ферритовые элементы. Как раз в те годы в электронике различных частот началось широкое применение ферритов - железосодержащих окислов металлов, которые являются диэлектриками, но обладают магнитными свойствами, близкими к свойствам железа. Работы по радиолокационному использованию антенн с электронным сканированием велись и в США. Первая публикация о фазовращателе на основе феррита, предназначенном для применения в антенне с электронным сканированием, появилась в конце 1954 года, а публикации по самой антенне - в 1956-1957 годах.

Проблема разработки антенны с электронным сканированием слагается из двух составных частей:

  • 1) выбор числа излучателей и конфигурации их размещения;
  • 2) разработка фазовращателей, управляющих фазой электромагнитной волны в излучателях.

макет антенны, разработанной в 1954-1955 годах и испытанной в июне 1955 года. Антенна представляла собой решетку из четырех диэлектрических излучателей, сверхвысокочастотная (СВЧ) волна к которым подается через фазовращатели, представляющие собой отрезки прямоугольных волноводов, частично заполненных ферритом. Ферритовые вкладыши находятся в переменном поле электромагнитов. Внешнее магнитное поле изменяет магнитную проницаемость феррита. Изменение магнитной проницаемости среды, в которой распространяется волна, изменяет фазовую скорость волны, в результате возникает требуемый фазовый сдвиг.

Как устроена антенна с электронным сканированием Следует различать антенны с

  • одномерным
  • двумерным сканированием

или, другими словами, антенны с движением луча в одной плоскости и антенны с движением луча в двух плоскостях. Антенны с одномерным сканированием нужны при работе с объектами, лежащими в одной плоскости. Примером может служить антенна радиолокатора, обеспечивающего управление движением в акватории морского порта, где все объекты, с которыми устанавливается связь или за которыми ведется наблюдение, находятся на водной поверхности. Иначе обстоит дело при обеспечении связи с искусственным спутником Земли или при управлении движением в районе большого аэропорта. В этих случаях направления на объекты, с которыми устанавливается связь или за которыми ведется наблюдение, могут находиться под разными углами как в горизонтальной, так и в вертикальной плоскости, поэтому луч антенны должен перемещаться в двух плоскостях.

С одномерным сканированием. Антенна представляет собой линейку излучателей, которые на рисунке схематически представлены в виде рупорных излучателей. Вход антенны представлен одним волноводом или коаксиальным кабелем, который соединяется с приемником, передатчиком или другой радиотехнической системой. Между входом антенны и излучателями расположен делитель мощности, и в цепи питания каждого излучателя включен фазовращатель. Фазовращатели управляются от единого устройства управления (компьютера) и формируют требуемое распределение фаз на излучателях. плоский фазовый фронт, расположенный под углом qk по отношению к плоскости расположения излучателей. Очевидно, что главный луч антенны формируется вдоль нормали по отношению к фазовому фронту волны, заданной излучателями, и, таким образом, главный луч антенны отклонен от оси симметрии антенны также на угол qk . Напомним, что из законов дифракции электромагнитных волн следует, что ширина луча антенны определяется отношением длины волны излучаемых электромагнитных колебаний к размеру антенны: где Dq - ширина луча, l - длина волны, L - размер антенны. Достаточно хорошо направленная антенна должна иметь ширину луча порядка одного углового градуса: Dq = 1. Пусть Dqk = 90, тогда N = 90, то есть конструкция линейки излучателей оказывается достаточно сложной. Рассмотрим антенну в виде решетки излучателей, обеспечивающей электронное сканирование луча в двух плоскостях. Решетка состоит из системы параллельных линеек излучателей, расположенных в одной плоскости. Число излучателей в составе одной линейки назовем числом излучателей в горизонтальной плоскости Nг, а само число линеек - числом излучателей в вертикальной плоскости Nв. Таким образом, общее число излучателей в рассматриваемой решетке

УСТРОЙСТВА ФОРМИРОВАНИЯ ФАЗОВЫХ СДВИГОВ Как было показано выше, в цепи питания каждого излучателя ФАР должно находиться устройство, обеспечивающее требуемый фазовый сдвиг, - фазовращатель. Фазовращатели для ФАР можно разделить на две большие группы:

  • 1) аналоговые фазовращатели, фазовый сдвиг в которых представляет собой непрерывную функцию управляющего воздействия (напряжения или тока);
  • 2) цифровые (дискретные) фазовращатели, фазовый сдвиг в которых задается двоичным кодом:

В основе аналоговых фазовращателей лежит материал, магнитная или диэлектрическая проницаемость которого изменяется под внешним воздействием. Таким материалом может служить феррит, о котором кратко говорилось выше, или сегнетоэлектрик, диэлектрическая проницаемость которого зависит от напряженности электрического поля Дискретность задания фаз хорошо вписывается в структуру команд управляющей ЭВМ, хотя и порождает некоторые ошибки в задании координат луча антенны, а также приводит к незначительному увеличению уровня боковых лепестков диаграммы направленности антенны. Однако при большом числе элементов ФАР возникшие таким путем погрешности усредняются и выходят на уровень, которым можно пренебречь.

Спешу развеять возможный скепсис по поводу разведения «соплей» о тяжестях новаторов в России. Речь пойдет именно о замечательной и передовой технологии.

Высокочувствительные антенны на основе массива управляемых пассивных рассеивателей

Данная технология может применяться к различным типам антенн на очень широком частотном диапазоне от сотен мегагерц до 10 ГГц. Технология совершенно новая и не имеет аналогов.

Как известно, антенны с фазированной антенной решеткой (ФАР) до настоящего времени не нашли широкого применения в беспроводных системах связи, доступных на массовом рынке телекоммуникационного оборудования (в сетях WiMax, LTE, 3G, WiFi и т.п.). Были единичные попытки создания таких коммерческих антенных систем, но результаты были не пригодными для массового применения.

И виной тому является значительная стоимость подобных устройств, связанная с высокой ценой СВЧ элементов (фазовращателей, волноводов и т.д.), на которых построено большинство современных антенных систем с управляемыми диаграммами направленности и, что еще более важно, программное обеспечение, являющееся весьма нетривиальной задачей в рамках данной технологии.

Между тем использование таких антенн привело бы к качественному скачку в возможностях беспроводных коммуникаций.

Забегая вперед скажу, что решение уже есть, но обо всем по порядку.

Приведу основные преимущества, схематичное описание технологии, варианты возможного применения технологии и подведу краткий итог.

Преимущества

Антенны изготовленные по данной технологии, обладают следующими преимуществами:

  • Низкая себестоимость - до $500 для базовых станций и до $100 для клиентских станций;
  • Автоматическое формирование распределенных беспроводных сетей со множеством узлов;
  • Минимизация влияния источников помех на качество связи;
  • Минимизация отрицательного влияния на качество связи отражений сигнала от окружающих объектов;
  • Определение направления на движущийся источник сигнала;
  • Низкое энергопотребление;
  • Высокая скорость переключения конечных состояний;
  • Быстрый интерфейс коммуникации с вычислительным устройством;
  • Высокая точность выходного сигнала (напряжения);
  • Возможность переконфигурации.
Описание технологии

Наши антенны могут быть исполнены в двух вариантах: с секторным сканированием и с круговым сканированием.

Антенны с круговым сканированием.

Концептуальная схема высокочувствительной антенны на 2,4 ГГц, обладающей высоким коэффициентом усиления и возможностью секторного сканирования:

Антенна состоит из зеркала (a), образованного трехмерным массивом управляемых рассеивателей, и приемопередающего элемента (облучателя) (b).

В качестве управляемых рассеивателей предполагается использование электрических вибраторов, нагруженных в центре емкостным импедансом, значение которого может изменяться. Вариация импеданса нагрузки позволяет настраивать фазу рассеянной вибратором волны. Одновременно с этим изменяется и амплитуда рассеянного поля. Предлагаемая конструкция (при которой рассеиватели размещаются в пространстве, а не на плоскости) позволяет произвольным образом изменять взаимное расположение рассеивателей, что расширяет возможности по оптимизации ее структуры для получения тех или иных характеристик.

Принцип работы:

Принцип работы изделия следующий - для эффективного приема излучения, значения нагрузок рассеивателей должны выбираться таким образом, чтобы фазы волн, создаваемых рассеивателями, обеспечивали оптимальное сложение этих волн в точке расположения приемопередающего элемента (облучателя).

Для воплощения описанной концепции была рассчитана конструкция рассеивателя - электрического диполя, а также архитектура всего зеркала, сформированного из рассеивателей. Кроме того, определена конструкция облучателя зеркала и его расположение относительно рассеивателей.

Конструкция рассеивателя:

Рассеиватель представляет собой одностороннюю печатную плату и образован плечами диполя (a), трансформатором импеданса - длинной линией (b), варикапом (с), подключенным к длинной линии, шунтирующими дросселями (d), отделяющими ВЧ часть рассеивателя от управляющих линий (e), по которым к варикапу прикладывается напряжение смещения. Длинная линия (трансформатор импеданса) введена в конструкцию для расширения диапазона изменения импеданса нагрузки на входе диполя.

Измерения тестового образца показали, что антенна обладает следующими характеристиками:

  • Рабочий диапазон частот 2.4 ГГц;
  • Ширина рабочей полосы частот до 200 МГц;
  • Коэффициент усиления антенной решетки более 21dBi при размерах антенной решетки 60см х 100см;
  • Перестройка главного лепестка диаграммы направленности от -60о до +60о в азимутальной плоскости и от -15о до +15о по углу места;
  • Обеспечение стабильности приема/передачи при изменении окружающей обстановки, а также поддержка многопользовательских режимов работы при удовлетворении требованиям высокой скорости переключения конечных состояний и быстроте интерфейса.
  • Средняя скорость передачи данных для устройств WiFi (IEEE 802.11b) - 6,85 Мбит/с на расстоянии 6,5км
  • Количество одновременных соединений - 135
Диаграмма направленности антенны с секторным сканированием (три рисунка соответствуют диаграммам направленности, смещенным в вертикальной плоскости):

Однако основным звеном в технологии, является программное обеспечение отвечающее за формирование требуемой диаграммы направленности. Была выбрана система управления использующая механизмы самоорганизации (самонастройки) массива рассеивателей.

Исполнение с круговым сканированием

Антенны с круговым сканированием, построенные с использованием УПР технологии, образованы многоярусной коллинеарной антенной, окруженной слоем пассивных рассеивателей специальной конструкции (рассчитанной с учетом влияния на их характеристики близко расположенного активного элемента и линий управления).

Для второго типа антенн достигнуты следующие характеристики:

  • рабочий диапазон частот - 2.4 ГГц
  • ширина полосы - 100/200 МГц
  • коэффициент усиления - до 8 dBi
  • диапазон углов сканирования - 360 градусов в горизонтальной плоскости
Диаграмма направленности антенны с круговым сканированием:
Возможные варианты коммерциализации технологии
  • Создание 3G / LTE модема, оборудованного управляемой антенной;
  • Создание WiFi точки доступа, оборудованной управляемой антенной;
  • Создание самонастраиваемых антенн для быстроразворачиваемых на неподготовленных территориях систем связи (в том числе с большим числом узлов);
  • Создание RFID систем большой дальности;
  • Создание клиентских терминалов для систем спутниковой связи;
  • Создание охранных радиолокационных систем;
  • Создание систем пеленгации подвижных объектов, передвигающихся по ограниченной территории;
  • Создание распределенных антенных систем (технология DAS).
Послесловие
Стоит отметить, что технология досконально проработана, была опробована в реальных условиях и показала превосходные результаты.
Также, несомненным является и тот факт, что перспективы у данной технологии крайне высоки, если не сказать, что за ней будущее.
Для более детального описания можно ознакомиться с презентацией .

Спасибо за внимание. Буду рад любым вопросам, замечаниям. И предложениям инвестирования.

Посвященная антеннам. Продолжая тему, хочу рассказать хабраобществу о принципах работы фазированных антенных решеток (ФАР). ФАР нашли широкое применение в радиолокационных комплексах, противоракетной обороне, космической связи; применение в гражданских объектах (коммерческих) затруднено сложностью изготовления и дороговизной. Возможно кто-то заинтересуется тематикой и придумает эффективное применение ФАР для коммерческого применения.

Что это?

ФАР это группа излучателей (фазовращателей, ФВ), в которых относительные фазы сигналов изменяются комплексно по определенному закону так, что эффективное излечение ФАР усиливается в желаемом направлении и подавляется во всех остальных. ФАР это матрица, где элементом матрицы является ФВ, но конечно же ФВ в пространстве могут иметь и другие конфигурации. На рисунке 1 показана РЛС секторного обзора «Имбирь», входит в состав зенитно-ракетного комплекса С300В. Можно увидеть и ФАР, и облучающий рупор.

Рисунок 1.

Как происходит фазирование?

Есть простая формула из курса физики: V = c/sqrt(mu*eps). В этой формуле V – фазовая скорость электромагнитной волны, с c – скорость света в вакууме, mu – магнитная проницаемость, eps – диэлектрическая проницаемость. Из этой формулы видно, что фазовая скорость зависит от мю и эпсилон, и меняя эти величины мы можем вводить задержку ЭМ волны через ФВ. Поэтому ФВ бывают ферритовые (можем менять их магнитную проницаемость) и сегнетоэлектрические (можем менять их диэлектрическую проницаемость). Питание к фазовращателям осуществляется по воздушному тракту (как на рис. 1) или посредством волноводов (например, в малогабаритных зенитно-ракетных комплексах, рис. 2).



Рисунок 2. ЗРК «Тор».

Схема ФАР на рис. 4 : антенна представляет собой линейку излучателей, между разделителем мощности и излучателями включены ФВ. Ферритовый ФВ представляет собой аналоговый феррит цилиндрической формы, на который намотаны обмотки управления. Изменяя ток в обмотках управления (задается блоком управления ФВ) изменяется магнитная проницаемость и соответственно фазовая скорость ЭМ волны в ФВ. Таким образом, последовательно изменяя уровень сигнала управления в обмотках процесс формирования волнового фронта может представлен как показано на рисунке 3, 4 (одномерный случай). Можно провести аналогию с камешками, которые последовательно кидаем в воду. Еще одной аналогией работы ФАР может служить линза. На рисунке 5 показано изменение формы волнового фронта с помощью линзы .


Рисунок 3. Формирование волнового фронта.



Рисунок 4. Схема ФАР.


Рисунок 5.


Рисунок 6. Типичная диаграмма направленности.

Электрическое сканирование обеспечивает создание разнообразных фазовых сдвигов по всему раскрыву и значительную скорость изменения этих сдвигов при сравнительно небольших потерях мощности. Управление работой фазовращателей осуществляется при помощи быстродействующей электронной системы, которая в простейших случаях управляет группами элементов (например, строками и столбцами в плоских ФАР с прямоугольным расположением излучателей), а в наиболее сложных – каждым фазовращателем в отдельности. Качание луча в пространстве может производиться как по заранее заданному закону, так и по программе, вырабатываемой в ходе работы всего радиоустройства, в которое входит ФАР .

Фазированная антенная решётка (ФАР), фазированная решётка, антенная решётка с управляемыми фазами или разностями фаз (фазовыми сдвигами) волн, излучаемых (или принятых) её элементами (излучателями). Управление фазами (фазирование) позволяет: формировать (при разнообразных расположениях излучателей) необходимую диаграмму направленности (ДН) ФАР (например, остронаправленную ДН – луч); изменять направление луча неподвижной ФАР и т. о. осуществлять быстрое, в ряде случаев практически безынерционное, сканирование – качание луча (см., например, Сканирование в радиолокации); в определённых пределах формой ДН – изменять ширину луча, интенсивность (уровни) боковых лепестков и т. п. (для этого в ФАР иногда осуществляют также управление и амплитудами волн отдельных излучателей). Эти и некоторые другие свойства ФАР, а также применять для управления ФАР современные средства автоматики и ЭВМ обусловили их перспективность и широкое в радиосвязи , радиолокации , радионавигации , радиоастрономии и т. д. ФАР, содержащие управляемых элементов (иногда 104 и более), входят в различных наземных (стационарных и подвижных), корабельных, авиационных и космических радиоустройств. Ведутся интенсивные разработки в направлении дальнейшего развития теории и техники ФАР и расширения области их применения.

Структура ФАР. Формы, размеры и конструкции современных ФАР весьма разнообразны; их разнообразие определяется как типом используемых излучателей, так и характером их расположения (рис. 1 ). сканирования ФАР определяется ДН её излучателей. В ФАР с быстрым широкоугольным качанием луча обычно используются слабонаправленные излучатели: симметричные и несимметричные вибраторы , часто с одним или несколькими рефлекторами (например, в виде общего для всей ФАР зеркала); открытые концы радиоволноводов , щелевые, рупорные, спиральные, диэлектрические стержневые, логопериодические и др. антенны . Иногда большие по размерам ФАР составляют из отдельных малых ФАР (модулей); ДН последних ориентируется в направлении основного луча всей ФАР. В ряде случаев, например допустимо медленное отклонение луча, в качестве излучателей используют остронаправленные антенны с механическим поворотом (например, т. н. полноповоротные зеркальные); в таких ФАР отклонение луча на выполняют посредством поворота всех антенн и фазирования излучаемых ими волн; фазирование этих антенн позволяет также осуществлять в пределах их ДН быстрое качание луча ФАР.

В зависимости от требуемой формы ДН и необходимого пространственного сектора сканирования в ФАР применяют различное взаимное расположение элементов: вдоль линии ( или дуги); по поверхности (например, плоской – в т. н. плоских ФАР; цилиндрической; сферической) или в заданном объёме (объёмные ФАР). Иногда излучающей поверхности ФАР – раскрыва (см. Излучение и приём радиоволн ), определяется конфигурацией объекта, на котором устанавливается ФАР (например, формой ИСЗ). ФАР с формой раскрыва, подобной форме объекта, иногда называются конформными. Широко распространены плоские ФАР; в них луч может сканировать от направления нормали к раскрыву (как в синфазной антенне ) до направления раскрыва (как в бегущей волны антенне ). Коэффициент направленного действия (КНД) плоской ФАР при отклонении луча от нормали к раскрыву уменьшается. Для обеспечения широкоугольного сканирования (в больших пространственных углах – до 4(стер ) без заметного снижения КНД используют ФАР с неплоским (например, сферическим) раскрывом или системы плоских ФАР, ориентированных в различных направлениях. в этих системах осуществляется посредством возбуждения соответственно ориентированных излучателей и их фазирования.

Управление фазовыми сдвигами. По способу изменения фазовых сдвигов различают ФАР с электромеханическим сканированием, осуществляемым, например, посредством изменения геометрической формы возбуждающего радиоволновода (рис. 2 , а); частотным сканированием, основанным на использовании зависимости фазовых сдвигов от частоты, например за счёт длины фидера между соседними излучателями (рис. 2, б) или дисперсии волн в радиоволноводе; с электрическим сканированием, реализуемым при помощи фазосдвигающих цепей или фазовращателей , управляемых электрическими сигналами (рис. 2 , в) с плавным (непрерывным) или ступенчатым (дискретным) изменением фазовых сдвигов.

Наибольшими возможностями обладают ФАР с электрическим сканированием. Они обеспечивают разнообразных фазовых сдвигов по всему раскрыву и значительную изменения этих сдвигов при сравнительно небольших потерях мощности. На СВЧ в современных ФАР широко используют ферритовые и полупроводниковые фазовращатели (с быстродействием порядка мксек и потерями мощности ~ 20%). Управление работой фазовращателей осуществляется при помощи быстродействующей электронной системы, которая в простейших случаях управляет группами элементов (например, строками и столбцами в плоских ФАР с прямоугольным расположением излучателей), а в наиболее сложных – каждым фазовращателем в отдельности. Качание луча в пространстве может производиться как по заранее заданному закону, так и по программе, вырабатываемой в ходе работы всего радиоустройства, в которое входит ФАР.

Особенности построения ФАР. Возбуждение излучателей ФАР (рис. 3 ) производится либо при помощи фидерных линий, либо посредством свободно распространяющихся волн (в т. н. квазиоптических ФАР), фидерные тракты возбуждения наряду с фазовращателями иногда содержат сложные электрические устройства (т. н. диаграммообразующие схемы), обеспечивающие всех излучателей от нескольких входов, что позволяет в пространстве соответствующие этим входам одновременно сканирующие (в многолучевых ФАР). Квазиоптические ФАР в основном бывают типов: проходные (линзовые), в которых фазовращатели и основные излучатели возбуждаются (при помощи вспомогательных излучателей) волнами, распространяющимися от общего облучателя, и отражательные – основной и вспомогательные излучатели совмещены, а на выходах фазовращателей установлены отражатели. Многолучевые квазиоптические ФАР содержат облучателей, каждому из которых соответствует свой луч в пространстве. Иногда в ФАР для формирования ДН применяют фокусирующие устройства (зеркала, линзы). Рассмотренные ФАР иногда называются пассивными.

Наибольшими возможностями управления характеристиками обладают активные ФАР, в которых к каждому излучателю или модулю подключен управляемый по фазе (иногда и по амплитуде) передатчик или приёмник (рис. 4 ). Управление фазой в активных ФАР может производиться в трактах промежуточной частоты либо в цепях возбуждения когерентных передатчиков, гетеродинов приёмников и т. п. Таким образом, в активных ФАР фазовращатели могут в диапазонах волн, отличных от частотного диапазона антенны; потери в фазовращателях в ряде случаев непосредственно не влияют на уровень основного сигнала. Передающие активные ФАР позволяют осуществить в пространстве мощностей когерентных электромагнитных волн, генерируемых отдельными передатчиками. В приёмных активных ФАР совместная обработка сигналов, принятых отдельными элементами, позволяет получать более полную информацию об источниках излучения.

В результате непосредственного взаимодействия излучателей между собой характеристики ФАР ( излучателей с возбуждающими фидерами, КНД и др.) при качании луча изменяются. Для борьбы с вредными последствиями взаимного влияния излучателей в ФАР иногда применяют специальные методы компенсации взаимной связи между элементами.

Перспективы развития ФАР. К наиболее важным направлениям дальнейшего развития теории и техники ФАР относятся: 1) широкое внедрение в радиотехнические устройства ФАР с большим числом элементов, разработка элементов новых типов, в частности для активных ФАР; 2) развитие методов построения ФАР с большими размерами раскрывов, в том числе неэквидистантных ФАР с остронаправленными антеннами, расположенными в пределах целого полушария Земли (глобальный радиотелескоп ), 3) дальнейшая разработка методов и технических средств ослабления вредных влияний взаимной связи между элементами ФАР; 4) развитие теории синтеза и методов машинного проектирования ФАР; 5) разработка теории и в практику новых методов обработки информации, принятой элементами ФАР, и использования этой информации для управления

ФАР, в частности для автоматического фазирования элементов (самофазирующиеся ФАР) и изменения формы ДН, например понижения уровня боковых лепестков в направлениях на источники помех (адаптивные ФАР); 6) методов управления независимым движением отдельных лучей в многолучевых ФАР.

Лит.: Вендик О. Г., Антенны с немеханическим движением луча, М., 1965; Сканирующие антенные системы СВЧ, пер. с англ., т. 1–3, М., 1966–71.

М. Б. Заксон.

Рис. 3. Типовые схемы возбуждения фазированных антенных решёток (ФАР) с последовательных возбуждением (а), параллельным возбуждением (б), многолучевой ФАР (в), квазиоптических ФАР - проходного (г) и отражательного (д) типов: В - возбуждающий фидер; И - излучатели; ПН - поглощающая ; Л - диаграмма направленности (луч); B1 - B4 входы ФАР; ДС - диаграммообразующая схема; ОИ - основные излучатели; ВИ - вспомогательные излучатели; СИ - совмещенные излучатели; О - облучатель; От - ; j - фазовращатель; пунктиром изображена электромагнитная с плоским фазовым фронтом, излучаемая ФАР, штрих-пунктиром - со сферическим фазовым фронтом, излучаемая облучателем.

Рис. 2. Примеры фазированных антенных решёток с электромеханическим (а), частотным (б) и электрическим (в) сканированием: Щ, - щелевые излучатели; В - возбуждающий волновод; Н - продольная пластина (нож) с управляемой глубиной погружения в волновод (служит для изменения фазовой скорости в волноводе); Д - дроссельные канавки; Р - рупоры; СВ - спиральный волновод; ДА - диэлектрические стержневые антенны; Ф - ферритовый стержень фазовращателя; ВВ - возбуждающие волноводы; О - управляющая обмотка фазовращателя; Ш - диэлектрическая .

Рис. 4. Структурные схемы некоторых активных фазированных антенных решёток - передающей (а), приёмной с фазированием в цепях гетеродина (б) и приёмной с фазированием в трактах промежуточной частоты (в): И - излучатель; УМ - мощности; В - возбудитель; С - ; Г - гетеродин; УПЧ - усилитель промежуточной частоты; СУ - суммирующее устройство; j - фазовращатель.

Рис. 1. Структурные схемы некоторых фазированных антенных решеток (ФАР) - линейной эквидистантной с симметричными вибраторами и общим зеркалом (а); линейной неэквидистантной с полноповоротными зеркальными параболическими антеннами (б); плоской с прямоугольным расположением рупорных излучателей (в); плоской с гексагональным расположением диэлектрических стержневых излучателей (г); конформной с щелевыми излучателями (д); сферической со спиральными излучателями (е); системы плоских фазированных антенных решеток (ж); В - вибраторы; Ф - линии возбуждения (фидеры); З - токопроводящее (); А - зеркальные антенны; Р - рупоры; ВР - возбуждающие радиоволны; Э - металлический экран; Щ - щелевые излучатели; К - коническая ФАР; Ц - цилиндрическая ФАР; С - спиральные излучатели; СЭ - сферический ; П - плоские фазированные антенные решетки (точками обозначены излучатели); L0 - между В; l1, l 2, l3 - расстояния между А.

Лучшие статьи по теме