Компьютерная грамотность

Оперативная память буферизованная что. Registered DIMM: основные моменты

Существует два основных типа оперативной памяти (ОЗУ); это буферизованная память — или регистровая память — и небуферизованная память. Небуферизованная память быстрее, и чаще значительно дешевле, чем буферизованная память. Таким образом — это тип модуля, который можно найти практически во всех домашних настольных и портативных компьютерах. Буферизованная память более дорогая, чем небуферизованный тип, и она также медленнее из-за того, как она обрабатывает хранение и восстановление данных.
Буферизованная память, однако, намного более стабильна, чем небуферизованные формы, поэтому она используется в основном на компьютерах с мейнфреймом и в серверах.

Небуферизованная память на сегодняшний день является наиболее распространенной формой модуля памяти компьютера, который можно найти в повседневном использовании. Эти модули памяти дешёвые для производства по сравнению с буферизованными модулями памяти, частично из-за их общего использования на домашних и коммерческих компьютерах, а также из-за того, что используется меньше аппаратного обеспечения. В небуферизованном модуле памяти нет встроенного оборудования для работы в качестве регистра для инструкций между чипом RAM и контроллером памяти компьютера. Это приводит к более быстрой скорости работы, но увеличивает риск критической ошибки потери памяти, возникающей из-за случайного характера размещения и восстановления информации, особенно в периоды интенсивной активности.

Чаще всего именуемая зарегистрированной памятью является буферизованной памятью. Небуферизованная память, как ни странно, сохранила своё имя и не была изменена на незарегистрированную память. Буферизованная память отличается от небуферизованного типа тем, что в ней имеется аппаратный регистр, который хранит информацию в кеше за один такт работы микросхемы памяти. Хотя эта операция может привести к более медленному времени работы микросхемы памяти, она обеспечивает дополнительную стабильность и снижает риск ошибок памяти.

В общем бытовом использовании разница в скорости между двумя типами модулей памяти кажется незначительной. В периоды интенсивного обмена информацией проявляется латентность, наблюдаемая с помощью регистра. Буферизованная память обычно используется в серверных компьютерах и системах мейнфреймов для обеспечения стабильности и защиту от повреждения, которая может возникать в небуферизованных модулях, когда они подвергаются постоянному интенсивному использованию. Хотя буферизованные модули являются более дорогими и, как правило, более медленными в работе, стабильность памяти и безопасность данных более чем компенсируются в рабочей среде.

Registered Memory, RDIMM , иногда buffered memory ) - вид компьютерной оперативной памяти , модули которой содержат регистр между микросхемами памяти и системным контроллером памяти . Наличие регистров уменьшает электрическую нагрузку на контроллер и позволяет устанавливать больше модулей памяти в одном канале. Регистровая память является более дорогой из-за меньшего объема производства и наличия дополнительных микросхем. Обычно используется в системах, требующих масштабируемости и отказоустойчивости в ущерб дешевизне (например - в серверах). Хотя большая часть модулей памяти для серверов является регистровой и использует ECC , существуют и модули с ECC но без регистров (UDIMM ECC), они так же в большинстве случаев работоспособны и в десктопных системах. Регистровых модулей без ECC не существует.

Из-за использования регистров возникает дополнительная задержка при работе с памятью. Каждое чтение и запись буферизуются в регистре на один такт, прежде чем попадут с шины памяти в чип DRAM, поэтому регистровая память считается на один такт более медленной, чем нерегистровая (UDIMM , unregistered DRAM). Для памяти SDRAM эта задержка существенна только для первого цикла в серии запросов (burst).

Буферизации в регистровой памяти подвергаются только сигналы управления и выставления адреса.

Буферизованная память (Buffered memory ) - более старый термин для обозначения регистровой памяти.

Некоторые новые системы используют полностью буферизованную память FB-DIMM , в которой производится буферизация не только управляющих линий, но и линий данных при помощи специального контроллера AMB, расположенного на каждом модуле памяти.

Техника регистровой памяти может применяться к различным поколениям памяти, например: DDR DIMM , DDR2 DIMM , DDR3 DIMM

Напишите отзыв о статье "Регистровая память"

Примечания

Литература

  • Memory systems: cache, DRAM, disk; раздел 10.3.3 Registered Memory Module (DIMM)

Ссылки

  • // ixbt

Отрывок, характеризующий Регистровая память

– Дурак! скотина! – закричал Пьер, что редко с ним случалось, ругая своего кучера. – Домой я велел; и скорее ступай, болван. Еще нынче надо выехать, – про себя проговорил Пьер.
Пьер при виде наказанного француза и толпы, окружавшей Лобное место, так окончательно решил, что не может долее оставаться в Москве и едет нынче же в армию, что ему казалось, что он или сказал об этом кучеру, или что кучер сам должен был знать это.
Приехав домой, Пьер отдал приказание своему все знающему, все умеющему, известному всей Москве кучеру Евстафьевичу о том, что он в ночь едет в Можайск к войску и чтобы туда были высланы его верховые лошади. Все это не могло быть сделано в тот же день, и потому, по представлению Евстафьевича, Пьер должен был отложить свой отъезд до другого дня, с тем чтобы дать время подставам выехать на дорогу.
24 го числа прояснело после дурной погоды, и в этот день после обеда Пьер выехал из Москвы. Ночью, переменя лошадей в Перхушкове, Пьер узнал, что в этот вечер было большое сражение. Рассказывали, что здесь, в Перхушкове, земля дрожала от выстрелов. На вопросы Пьера о том, кто победил, никто не мог дать ему ответа. (Это было сражение 24 го числа при Шевардине.) На рассвете Пьер подъезжал к Можайску.
Все дома Можайска были заняты постоем войск, и на постоялом дворе, на котором Пьера встретили его берейтор и кучер, в горницах не было места: все было полно офицерами.
В Можайске и за Можайском везде стояли и шли войска. Казаки, пешие, конные солдаты, фуры, ящики, пушки виднелись со всех сторон. Пьер торопился скорее ехать вперед, и чем дальше он отъезжал от Москвы и чем глубже погружался в это море войск, тем больше им овладевала тревога беспокойства и не испытанное еще им новое радостное чувство. Это было чувство, подобное тому, которое он испытывал и в Слободском дворце во время приезда государя, – чувство необходимости предпринять что то и пожертвовать чем то. Он испытывал теперь приятное чувство сознания того, что все то, что составляет счастье людей, удобства жизни, богатство, даже самая жизнь, есть вздор, который приятно откинуть в сравнении с чем то… С чем, Пьер не мог себе дать отчета, да и ее старался уяснить себе, для кого и для чего он находит особенную прелесть пожертвовать всем. Его не занимало то, для чего он хочет жертвовать, но самое жертвование составляло для него новое радостное чувство.

Регистровая память , илиСОЗУ (сверх ОЗУ), обладает наибольшим быстродействием. Объем памяти СОЗУ очень мал.Регистровая -хранит операнды,коды операций,результаты . В состав блока регистров общего назначения входят 4 шестнадцатиразрядных регистраAX, BX, CX, DX. AX -операции умножения, деления и преобразования десятичной коррекции , участвует во всех операциях ввода вывода в качестве источника или приемника;BX -источник базового адреса .CX счетчик в командах сдвигов и зацикливания ;DX неявным образом адресуется в командах умножения и деления, и кроме того содержит адрес порта ввода вывода при косвенно-регистровой адресации. РегистрыSP, BP, SI, DI предназначены для обеспечения косвенную адресацию и динамическое вычисление исполнительных адресов .

Регистр флагов хранит признаки результатов выполнения арифметических и логических операций и управляющие биты.

Каждый из регистров имеет уникальную природу и предоставляет определенные возможности, которые другими регистрами или ячейками памяти не поддерживаются.

Регистры общего назначения процессора используются в операциях большинства инструкций в качестве источника или приемника при перемещении данных и вычислениях, указателей на ячейки памяти и счетчиков. Каждый регистр общего назначения может использоваться для хранения значения, в арифметических и логических операциях; между регистром и памятью может выполняться обмен (запись из регистра в память и наоборот).

Регистры особого назначения:

    32-64-128– разрядные;

    хранение адресов, операндов, результатов;

    Регистр указателя команд

    Регистр флагов

Время доступа » нсек

Кэш-память - согласует процессор с оперативной памятью.

Cache-level1-128 КБ, на кристалле CPU, работает с тактовой частотой

CPU.Cache-level2-2-6-МБ,работает с частотой общей шины

Кэш - промежуточный буфер с быстрым доступом, содержащий копию той информации, которая хранится в оперативной памяти с менее быстрым доступом, но с наибольшей вероятностью может быть оттуда запрошена

Принцип локальности программ:

    Принцип пространственной локальности велика вероятность, что программа обратится к следующей ячейке за той, к которой обращается сейчас, поэтому целесообразно считывать блок ячеек

    Принцип временной локальности вероятно, что программа вскоре обратится к тем же данным, поэтому целесообразно хранить данные в Кэш некоторое время

Оперативная ОЗУ : С точки зрения физического принципа действия различают динамическую память (DRAM) и статическую память (SRAM).

Ячейки статической памяти (SRAM) можно представить как электронные

микроэлементы – триггеры, состоящие из нескольких транзисторов. В триггере хранится не заряд, а состояние (включен/выключен ), поэтому этот тип памяти обеспечивает существенно более высокое быстродействие, хотя технологически он сложнее и,соответственно, дороже.

Микросхемы динамической памяти используют в качестве основной оперативной памяти компьютера. Микросхемы статической памяти используют в качестве кэш-памяти.

Микросхемы статистического типа-триггера (переход из состояния в состояние возможен только при подаче сигнала на опр-й вход.статистич.пам.-4 триггера).

Микросхемы динамического типа – конденсаторы (зарядка конд. до соотв. напряжения=1,разрядка до сост. близкого к нулю=0.Необходима подзарядка,т.к. время хранения заряда ограничено).

Верхняя пам.>640 КБ(для передачи изображения на экран,хранения драйверов, загрузки, тестирования).

Нижняя<640 КБ (прикладные программы, ОС). Предназначена для временного хранения данных и команд, необходимыхпроцессорудля выполнения им операций.

Оперативная память передаёт процессору данные непосредственно, либо через кэш-память. Каждая ячейка оперативной памяти имеет свой индивидуальный адрес.ОЗУ может изготавливаться как отдельный блок или входить в конструкцию однокристальнойЭВМилимикроконтроллера.

Время доступа » 50 нсек

Постоянная память предназначена для хранениянеизменной информации. Эта информация заносится вмикросхему постоянной памяти заводом-изготовителем компьютера. В постоянной памяти современных компьютеров находится BIOS - BIOS- базовая система ввода/вывода. В состав BIOS входят программа самотестирования компьютера при его включении, драйвера некоторых устройств (монитора, дисковых накопителей информации и пр.) а также программа загрузки с дисковых устройств операционной системы. Питание от батарейки. В процессе эксплуатации компьютера содержимое постоянной памяти как правило не изменяется, хотя в последнее время устанавливаются flash-микросхемы, которые можно перепрограммировать не вынимая из компьютера.

5.Внешняя -длительное хранение

Внешняя память:

    Накопители на магнитных дисках

    Накопители на оптических дисках

    Приветствую вас, мои дорогие читатели. Предметом нашей сегодняшней беседы будет регистровая память. Большинство из вас скорей всего впервые слышат этот термин, поскольку обычные пользовательские компьютеры не имеют к нему никакого отношения. А раз так, то логично предположить, что такой модуль обладает какими-то дополнительными или незаурядными возможностями.

    Речь идет о разновидности оперативной памяти, и вы скажете, что неплохо было бы ее заполучить и опробовать в деле. Но давайте не будем спешить. Дочитайте статью до конца и вы, узнаете не только, что это за память, но и что с ней можно и что нельзя делать.

    Для начала определимся с терминами.

    Регистровая память (Registered Memory) обозначается аббревиатурой RDIMM, так как является разновидностью обычной DIMM памяти, которую мы хорошо знаем как DDR2, DDR3, DDR4.

    Соответственно нерегистровую память называют, unregistered DRAM или UDIMM. Так же регистровую память именуют буферной, что справедливо в отношении принципа ее работы.

    Для чего нужны регистры?

    Теперь вспомним, как работает ОЗУ. Данные загружаются в нее с жесткого диска, но команды на выполнение этих действий идут из центрального процессора. А точнее из контроллера памяти, который напрямую связан с чипами оперативки. При работе обычных компьютеров (даже игровых) все процессы происходят в штатном режиме.

    Но вот в серверах интенсивность обращений к оперативке намного выше, причем одновременно может обрабатываться множество невзаимосвязанных запросов. Очевидно, что при этом может быть задействовано сразу несколько микросхем ОЗУ, что приводит к повышению токовой нагрузки на контроллер и увеличивает риск выхода его из строя.

    Чтобы повысить надежность системы «Оперативная память – Контроллер» между ними интегрируется регистровый модуль, в котором происходит предварительная буферизация информации при ее чтении или записи. Сам этот чип располагается непосредственно на планке оперативной памяти, которая поэтому и называется регистровой.

    Как опознать RDIMM?

    Выходит, у регистровой памяти отличие от обычной в дополнительной микросхеме, спросите вы? Конечно да, но не спешите заниматься подсчетом чипов.

    Дело в том, регистровая память используется исключительно как серверная. А значит, в ней обязательно должна быть реализована технология ECC (error-correcting code memory), назначение которой ˗ коррекция ошибок в считываемой из ОЗУ информации. Специальный процессор, так же установленный на плашке оперативки, сверяя её с исходными данными, записанными в память, и способен при этом обнаружить несоответствие бита в одном машинном слове.

    Обычно на 8 микросхем ОЗУ идет один модуль ECC и один регистровый, который, кстати, отличается меньшими размерами. Зная это, при беглом взгляде на планку памяти можно подсчитать общее количество чипов и сделать вывод о том обычная это оперативка или нет.

    Чтобы не запутаться в подсчёте микросхем я все-таки предлагаю обращать внимание на маркировку, по которой вы легко определите регистровую память. Просто прочитайте, что написано в конце: если есть символы «R» или «REG» то это она.

    Необычные качества регистровой памяти

    Теперь поговорим об особенностях регистровой памяти. Это полезная информация, особенно для тех, кто возжелал с ее помощью апгрейдить свой ПК:

    Дополнительный буферный элемент в структуре связи между ОЗУ и контроллером влияет на быстродействие памяти, ведь каждое обращение к регистрам производится потактово. А значит, на величину такта такая память будет медленнее обычной. Если сравнивать с SDRAM то задержка имеет место для начального цикла запросов.

    • Я уже сказал, что регистровая память предназначена исключительно для работы на серверах. Если быть более точным, то на материнских платах, созданных для них. Поэтому не пытайтесь вдулить ее на обычную материнку. Хотя, если «мать» поддерживает такую возможность (а это можно уточнить в ее паспорте), то почему бы и нет. Опять-таки, если ваш ПК выполняет функции сервера или используется для удаленной работы – такое решение добавить надежности вполне оправдано.
    • Главное преимущество регистровой памяти ˗ повышение эффективности работы контроллера с множеством модулей оперативной памяти. С RDIMM вы получаете масштабируемую систему, которая при соответствующей поддержке процессора может работать в трех или четырех канальном режиме. А это существенный прирост скорости считывания данных и производительности (хотя и приходится снижать рабочую частоту ОЗУ). На практике это отлично реализуется в серверных материнских платах типа SuperMicro X9DR3-LN4F+, где вы можете задействовать все 24 RAM-слота.

    • Планируя наращивать объем памяти для многоканального режима помните о том, что совместная работа модулей RDIMM и UDIMM не только невозможна, но и недопустима. Так что лучше сразу подобрать аналоги для существующей регистровой памяти с таким же объемом, частотой и .

    Вот такая она, регистровая память.

    Нравится вам это, или нет, но она не для всех. Да, она и по цене дороже, и в продаже встречается не так часто. Но главное, у нее узкая серверная специализация. Но, друзья, согласитесь, RDIMM это очень интересный объект, изучив который вы не только повысили уровень своих компьютерных знаний, но и получили дополнительную информацию о работе оперативки.

    На этом я заканчиваю нашу беседу и желаю вам всем процветания и успехов.

    #Registered_DDR4 #Registered_DDR3

    Регистровая память (registered, буферизованная, buffered) – вид оперативной памяти, модули которой содержат регистр между микросхемами памяти и контроллером памяти. Обычно используется в системах, требующих масштабируемости и отказоустойчивости. Наличие регистров уменьшает электрическую нагрузку на контроллер памяти, что позволяет устанавливать большее количество модулей памяти на один канал. Таким образом, обеспечение максимального объема памяти, поддерживаемого современными процессорами, возможно только при использовании регистровой памяти

    Регистровые модули (RDIMM) необходимы для установки большого объема оперативной памяти по сравнению с небуферизованной памятью DIMM (UDIMM). Стоит учитывать, что модули UDIMM – неважно, с поддержкой ECC или без нее, – не могут работать совместно с RDIMM, причем в некоторых случаях попытка совместить такую память может привести к выходу из строя материнской платы либо модулей памяти. Поэтому, выбирая память, необходимо сразу брать регистровые модули, так как в случае модернизации не придется заменять всю память сервера. Максимальные значения объема памяти, ее частоты и количество модулей приведены в таблице ниже. Также здесь представлена информация о :

    UDIMM RDIMM LV RDIMM LRDIMM
    Максимальная частота при двух модулях на канал 1333 1600 МГц 1333 МГц 1333 МГц
    Максимальная частота при трех модулях на канал Работа в таком режиме не допускается 1333 МГц 1333 МГц 1066 МГц
    Максимальный объем памяти на процессор (четырехканальный режим) 64 ГБ
    192 ГБ при трех модулях на канал - Dual Rank
    256 ГБ при двух модулях на канал - Quad Rank
    384 ГБ
    Максимальная частота памяти
    при максимальном объеме
    1066 МГц 1066 МГц - Dual Rank
    800 МГц - Quad Rank
    1066 МГц - Dual Rank
    800 МГц - Quad Rank
    1066 МГц
    Рабочее напряжение 1.5 В 1.5 В 1.35 В 1.35 В/1.5 В
    Потребление энергии
    при трех модулях на канал
    (на модуль)
    4 Вт 4.5 Вт ≤4 Вт 5-6 Вт

    Преимущества регистровой памяти прекрасно демонстрируют серверные материнские платы, например SuperMicro X9DR3-LN4F+, на которой имеется 24 слота памяти, по 12 на каждый процессор. Так как процессоры для данной платы поддерживают четырехканальную память, получаем три модуля на канал. Для сравнения – платы для похожих процессоров, не поддерживающих регистровую память, имеют максимум восемь слотов памяти.


    Некоторым недостатком регистровой памяти является небольшое уменьшение производительности. Каждое чтение и запись буферизуются в регистре на один такт, прежде чем попадут с шины памяти в чип DRAM, поэтому регистровая память считается на один такт более медленной, чем нерегистровая. Для памяти типа SDRAM, к которой относятся современные DDR3 и DDR4 модули, эта задержка существенна только для первого цикла в серии запросов.

Лучшие статьи по теме